?2947080 Summary - Canadian Patents Database (2024)

Note: Descriptions are shown in the official language in which they were submitted.

CA 02947080 2016-11-01
SCLEROSTIN BINDING AGENTS
TECHNICAL FIELD
The present invention relates generally to epitopes of sclerostin protein,
including
human sclerostin protein, and binding agents (such as antibodies) capable of
binding to
sclerostin or fragments thereof.
BACKGROUND OF THE INVENTION
Two or three distinct phases of changes to bone mass occur over the life of an
individual (see Riggs, West J. Med. 154:63-77 (1991)). The first phase occurs
in both men and
women and proceeds to attainment of a peak bone mass. This first phase is
achieved through
linear growth of the endochondral growth plates and radial growth due to a
rate of periosteal
apposition. The second phase begins around age 30 for trabecular bone (flat
bones such as the
vertebrae and pelvis) and about age 40 for cortical bone (e.g., long bones
found in the limbs) and
continues to old age. This phase is characterized by slow bone loss and occurs
in both men and
women. In women, a third phase of bone loss also occurs, most likely due to
postmenopausal
estrogen deficiencies. During this phase alone, women may lose an additional
bone mass from
the cortical bone and from the trabecular compartment (see Riggs, supra).
Loss of bone mineral content can be caused by a wide variety of conditions and
may result in significant medical problems. For example, osteoporosis is a
debilitating disease
in humans and is characterized by marked decreases in skeletal bone mass and
mineral density,
structural deterioration of bone, including degradation of bone
microarchitecture and
corresponding increases in bone fragility (i.e., decreases in bone strength),
and susceptibility to
fracture in afflicted individuals. Osteoporosis in humans is generally
preceded by clinical
osteopenia (bone mineral density that is greater than one standard deviation
but less than 2.5
standard deviations below the mean value for young adult bone), a condition
found in
approximately 25 million people in the United States. Another 7-8 million
patients in the United
States have been diagnosed with clinical osteoporosis (defined as bone mineral
content greater
than 2.5 standard deviations below that of mature young adult bone). The
frequency of
osteoporosis in the human population increases with age. Among Caucasians,
osteoporosis is
predominant in women who, in the United States, comprise 80% of the
osteoporosis patient
pool. The increased fragility and susceptibility to fracture of skeletal bone
in the aged is
aggravated by the greater risk of accidental falls in this population.
Fractured hips, wrists, and
vertebrae are among the most common injuries associated with osteoporosis. Hip
fractures in

CA 02947080 2016-11-01
particular are extremely uncomfortable and expensive for the patient, and for
women, correlate
with high rates of mortality and morbidity.
Although osteoporosis has been regarded as an increase in the risk of fracture
due
to decreased bone mass, few of the presently available treatments for skeletal
disorders can
increase the bone density of adults, and most of the presently available
treatments work
primarily by inhibiting further bone resorption rather than stimulating new
bone formation.
Estrogen is now being prescribed to retard bone loss. However, some
controversy exists over
whether patients gain any long-term benefit and whether estrogen has any
effect on patients
over 75 years old. Moreover, use of estrogen is believed to increase the risk
of breast and
endometrial cancer. Calcitonin, osteocalcin with vitamin K, or high doses of
dietary calcium,
with or without vitamin D, have also been suggested for postmenopausal women.
High doses of
calcium, however, often have undesired gastrointestinal side effects, and
serum and urinary
calcium levels must be continuously monitored (e.g., Khosla and Riggs, Mayo
Clin, Proc.
70:978982, 1995).
Other current therapeutic approaches to osteoporosis include bisphosphonates
(e.g., FosamaxTm, Actonellm, BonvivaTM, ZometaTM, olpadronate, neridronate,
skelid, bonefos),
parathyroid hormone, calcilytics, calcimimetics (e.g., cinacalcet), statins,
anabolic steroids,
lanthanum and strontium salts, and sodium fluoride. Such therapeutics,
however, are often
associated with undesirable side effects (see Khosla and Riggs, supra).
Sclerostin, the product of the SOST gene, is absent in sclerosteosis, a
skeletal
disease characterized by bone overgrowth and strong dense bones (Brunkow
etal., Am. J. Hum.
Genet., 68:577-589, 2001; Balemans et al., Hum. Mol. Genet., 10:537-543,
2001). The amino
acid sequence of human sclerostin is reported by Brunkow etal. ibid and is
disclosed herein as
SEQ ID NO:l.
BRIEF SUMMARY OF THE INVENTION
Disclosed herein are compositions and methods that can be used to increase at
least one of bone formation, bone mineral density, bone mineral content, bone
mass, bone
quality and bone strength, and that therefore may be used to treat a wide
variety of conditions in
which an increase in at least one of bone formation, bone mineral density,
bone mineral content,
bone mass, bone quality and bone strength is desirable. The present invention
also offers other
related advantages described herein.
2

CA 02947080 2016-11-01
The invention relates to regions (epitopes) of human sclerostin recognized by
the
binding agents disclosed herein, methods of using these epitopes, and methods
of making such
epitopes.
The invention also relates to epitopes specific to the region of sclerostin
identified as Loop 2, and binding agents which specifically bind to that
region.
The invention also relates to epitopes specific to the cystine-knot region of
sclerostin, and binding agents such as antibodies specifically binding to that
region.
The invention relates to binding agents, such as antibodies, that specifically
bind
to sclerostin. The binding agents can be characterized by their ability to
cross-block the binding
of at least one antibody disclosed herein to sclerostin and/or to be cross-
blocked from binding
sclerostin by at least one antibody disclosed herein. The antibodies and other
binding agents can
also be characterized by their binding pattern to human sclerostin peptides in
a "human
sclerostin peptide epitope competition binding assay" as disclosed herein.
The invention relates to binding agents, such as antibodies, that can increase
at
least one of bone formation, bone mineral density, bone mineral content, bone
mass, bone
quality and bone strength in a mammal.
The invention relates to binding agents, such as antibodies, that can block
the
inhibitory effect of sclerostin in a cell based mineralization assay.
The invention further relates to polypeptide constructs comprising two, three,
or
four polypeptide fragments linked by at least one disulfide bond, representing
a core region of
the cystine-knot of sclerostin, and antibodies capable of specifically binding
thereto.
The invention relates to methods of obtaining epitopes suitable for use as
immunogens for generating, in mammals, binding agents, such as antibodies
capable of binding
specifically to sclerostin; in certain embodiments the binding agents
generated are capable of
neutralizing sclerostin activity in vivo.
The invention relates to a composition for eliciting an antibody specific for
sclerostin when the composition is administered to an animal, the composition
comprising a
polypeptide having the amino acid sequence of SEQ ID NO:6, SEQ ID NO:63, SEQ
ID NO:64,
SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, or SEQ ID NO:69.
The invention also relates to a composition for eliciting an antibody specific
for
sclerostin when the composition is administered to an animal, the composition
comprising at
least one polypeptide consisting essentially of the amino acid sequence of SEQ
ID NO:2, SEQ
ID NO:3, SEQ ID NO:4 or SEQ ID NO:5; the composition may comprise at least two
or at least
three of the amino acid sequences of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4 and
SEQ ID
3

CA 02947080 2016-11-01
NO:5, and the composition may comprise all four of the amino acid sequences of
SEQ ID NO:2,
SEQ ID NO:3, SEQ ID NO:4 and SEQ ID NO:5.
The invention further relates to a composition for eliciting an antibody
specific
for sclerostin when the composition is administered to an animal, the
composition comprising a
polypeptide having the amino acid sequences of SEQ ID NO:2, SEQ ID NO:3, SEQ
ID NO:4
and SEQ ID NO:5, wherein SEQ ID NO:2 and 4 are joined by a disulfide bond at
amino acid
positions 57 and 111 with reference to SEQ ID NO:1, and SEQ ID NO:3 and 5 are
joined by at
least one of (a) a disulfide bond at amino acid positions 82 and 142 with
reference to SEQ ID
NO:1, and (b) a disulfide bond at amino acid positions 86 and 144 with
reference to SEQ ID
NO:1; the polypeptide may retain the tertiary structure of the corresponding
polypeptide region
of human sclerostin of SEQ ID NO: 1.
The invention also relates to polypeptide T20.6 consisting essentially of a
multiply truncated human sclerostin protein of SEQ ID NO:1, wherein amino
acids 1-50, 65-72,
91-100, 118-137, and 150-190 of SEQ ID NO:1 are absent from the polypeptide;
this
polypeptide may be obtained by tryptic digestion of human sclerostin, and the
protein may be
isolated by HPLC fractionation.
The invention further relates to immunogenic portion T20.6 of human sclerostin
comprising amino acids 51-64, 73-90, 101-117, and 138-149 of SEQ ID NO:1,
wherein the
immunogenic portion comprises at least one of:
(a) a disulfide bond between amino acids 57 and 111;
(b) a disulfide bond between amino acids 82 and 142; and
(c) a disulfide bond between amino acids 86 and 144;
the immunogenic portion may have at least two of these disulfide bonds; and
the
immunogenic portion may have all three disulfide bonds.
The invention further relates to an immunogenic portion T20.6 derivative of
human sclerostin comprising amino acids 57-64, 73-86, 111-117, and 138-144 of
SEQ ID NO:1,
wherein the immunogenic portion comprises at least one of:
(a) a disulfide bond between amino acids 57 and 111;
(b) a disulfide bond between amino acids 82 and 142; and
(c) a disulfide bond between amino acids 86 and 144;
the immunogenic portion may have at least two of these disulfide bonds; and
the
immunogenic portion may have all three disulfide bonds.
4

CA 02947080 2016-11-01
The invention yet further relates to a polypeptide consisting essentially of a
human sclerostin protein of SEQ ID NO:1 truncated at the C-terminal and N-
terminal ends,
wherein amino acids 1-85 and 112-190 of SEQ ID NO:1 are absent from the
polypeptide.
The invention also relates to an immunogenic portion of human sclerostin,
comprising amino acids 86-111 of SEQ ID NO:1; the immunogenic portion may
consist
essentially of contiguous amino acids CGPARLLPNAIGRGKWWRPSGPDFRC (SEQ ID
NO:6).
The invention further relates to an immunogenic portion of rat sclerostin,
comprising amino acids 92-109 of SEQ ID NO:98; the immunogenic portion may
consist
essentially of contiguous amino acids PNAIGRVKWWRPNGPDFR (SEQ ID NO:96).
The invention still further relates to an immunogenic portion of rat
sclerostin,
comprising amino acids 99-120 of SEQ ID NO:98; the immunogenic portion may
consist
essentially of contiguous amino acids KWWRPNGPDFRCIPDRYRAQRV (SEQ ID NO:97).
The invention relates to a method of producing an immunogenic portion of
human sclerostin, comprising the steps of:
(a) treating human sclerostin to achieve complete tryptic digestion;
(b) collecting the tryptic digest sample having average molecular weight of
7,122.0 Daltons (theoretical mass 7121.5 Daltons) or retention time of about
20.6 minutes as determined by elution from a reverse-phase II:PLC column
with linear gradient from 0.05% trifluoroacetic acid to 90% acetonitrile in
0.05% TFA at a flow rate of 0.2m1/min; and
(c) purifying the immunogenic portion.
The invention relates to a method of generating an antibody capable of
specifically binding to sclerostin, comprising:
(a) immunizing an animal with a composition comprising a polypeptide of SEQ
ID NO:6, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66,
SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:96, or SEQ ID
NO:97;
(b) collecting sera from the animal; and
(c) isolating from the sera an antibody capable of specifically binding to
sclerostin.
The invention also relates to a method of generating an antibody capable of
specifically binding to sclerostin, the method comprising:
5

CA 02947080 2016-11-01
(a) immunizing an animal with a composition comprising polypeptide T20.6 or a
derivative of T20.6;
(b) collecting sera from the animal; and
(c) isolating from the sera an antibody capable of specifically binding to
sclerostin.
The invention further relates to a method of detecting an anti-sclerostin
antibody
in a biological sample, comprising the steps of
(a) contacting the biological sample with a polypeptide consisting essentially
of
SEQ ID NO:6, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID
NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:96, or
SEQ ID NO:97 under conditions allowing a complex to form between the
antibody and the polypeptide; and
(b) detecting the presence or absence of the complex,
wherein the presence of the complex indicates that the biological sample
contains an anti-
sclerostin antibody.
The invention also relates to a method of detecting an anti-sclerostin
antibody in
a biological sample, comprising the steps of
(a) contacting the biological sample with polypeptide T20.6 or a derivative of

T20.6 under conditions allowing a complex to form between the antibody and
the polypeptide; and
(b) detecting the presence or absence of the complex,
wherein the presence of the complex indicates that the biological sample
contains an anti-
sclerostin antibody.
The invention further relates to a sclerostin binding agent, such as an
antibody,
that cross-blocks the binding of at least one of antibodies Ab-A, Ab-B, Ab-C,
or Ab-D to a
sclerostin protein. The sclerostin binding agent may also be cross-blocked
from binding to
sclerostin by at least one of antibodies Ab-A, Ab-B, Ab-C, or Ab-D. The
isolated antibody, or
an antigen-binding fragment thereof, may be a polyclonal antibody, a
monoclonal antibody, a
humanized antibody, a human antibody, a chimeric antibody or the like.
The invention further relates to a sclerostin binding agent, such as an
antibody,
that is cross-blocked from binding to sclerostin by at least one of antibodies
Ab-A, Ab-B, Ab-C,
or Ab-D. The isolated antibody, or an antigen-binding fragment thereof, may be
a polyclonal
antibody, a monoclonal antibody, a humanized antibody, a human antibody, a
chimeric
antibody or the like.
6

CA 02947080 2016-11-01
The invention further relates to a sclerostin binding agent, such as an
isolated
antibody, that cross-blocks the binding of at least one of antibodies 1-24 (Ab-
1 to Ab-24) to a
sclerostin protein. The sclerostin binding agent may also be cross-blocked
from binding to
sclerostin by at least one of antibodies 1-24 (Ab-1 to Ab-24). The isolated
antibody, or an
antigen-binding fragment thereof, may be a polyclonal antibody, a monoclonal
antibody, a
humanized antibody, a human antibody, or a chimeric antibody.
The invention further relates to a sclerostin binding agent, such as an
isolated
antibody, that is cross-blocked from binding to sclerostin by at least one of
antibodies 1-24 (Ab-
1 to Ab-24); the isolated antibody, or an antigen-binding fragment thereof,
may be a polyclonal
antibody, a monoclonal antibody, a humanized antibody, a human antibody, or a
chimeric
antibody.
The invention further relates to a binding agent, such as an isolated antibody
that
exhibits a similar binding pattern to human sclerostin peptides in a "human
sclerostin peptide
epitope competition binding assay" as that exhibited by at least one of the
antibodies Ab-A, Ab-
B, Ab-C or Ab-D; the isolated antibody, or an antigen-binding fragment
thereof, may be a
polyclonal antibody, a monoclonal antibody, a humanized antibody, a human
antibody, or a
chimeric antibody.
The invention still further relates to a method for treating a bone disorder
associated with at least one of low bone formation, low bone mineral density,
low bone mineral
content, low bone mass, low bone quality and low bone strength in a mammalian
subject which
comprises providing to a subject in need of such treatment an amount of an
anti-sclerostin
binding agent sufficient to increase at least one of bone formation, bone
mineral density, bone
mineral content, bone mass, bone quality and bone strength wherein the anti-
sclerostin binding
agent comprises an antibody, or sclerostin-binding fragment thereof.
The invention also relates to an isolated sclerostin polypeptide or fragments
thereof, wherein the polypeptide contains 6 conserved cysteine residues and
the fragments
thereof comprise from 7 to 14 amino acids of SEQ ID NO:2; 8 to 17 amino acids
of SEQ ID
NO:3; 8 to 18 residues of SEQ ID NO:4; and 6 to 12 residues of SEQ ID NO:5,
and the
polypeptide or fragments thereof are stabilized by disulfide bonds between SEQ
ID NO:2 and 4,
and between SEQ ID NO:3 and 5; the polypeptide or fragments may comprise 10-14
amino
acids of SEQ ID NO:2; 14 to 17 amino acids of SEQ ID NO:3; 13 to 18 amino
acids of SEQ ID
NO:4;, and 8 to 12 residues of SEQ ID NO:5; and the polypeptide or fragments
may comprise
SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, and SEQ ID NO:5.
Provided herein are antibodies that specifically bind to human sclerostin. The
7

CA 02947080 2016-11-01
antibodies are characterized by their ability to cross-block the binding of at
least one antibody
disclosed herein to human sclerostin and/or to be cross-blocked from binding
human sclerostin
by at least one antibody disclosed herein.
Also provided is an isolated antibody, or an antigen-binding fragment thereof,
that can increase at least one of bone formation, bone mineral density, bone
mineral content,
bone mass, bone quality and bone strength in a mammal.
Also provided in an isolated antibody, or an antigen-binding fragment thereof,

that can block the inhibitory effect of sclerostin in a cell based
mineralization assay.
Also provided is a binding agent, such as an antibody, that specifically binds
to
human sclerostin and has at least one CDR sequence selected from SEQ ID NOs:
39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 78, 79, 80, 81, 99,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291,
292, 293, 294, 295,
296, 297, 298, 351, 352, 353, 358, 359, and 360, and variants thereof, wherein
the antibody or
antigen-binding fragment thereof neutralizes sclerostin.
Also provided is a binding agent, such as an antibody, that specifically binds
to
human sclerostin and has at least one CDR sequence selected from SEQ ID
NOs:39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 78, 79, 80, 81, 99,
100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 237, 238,
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291,
292, 293, 294, 295,
296, 297, 298, 351, 352, 353, 358, 359, and 360, and variants thereof.
Also provided are regions of human sclerostin which are important for the in
vivo
activity of the protein.
These and other aspects of the present invention will become apparent upon
reference to the following detailed description and attached drawings. All
references disclosed
herein are hereby incorporated by reference in their entireties as if each was
incorporated
individually.
8

CA 02947080 2016-11-01
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts the amino acid sequences of the mature form (signal peptides
cleaved off) of the light chain (Figure 1A) (SEQ ID NO:23) and heavy chain
(Figure 1B) (SEQ
ID NO:27) for the anti-human sclerostin and anti-mouse sclerostin antibody Ab-
A.
Figure 2 depicts the amino acid sequences of the mature form (signal peptides
cleaved off) of the light chain (Figure 2A) (SEQ ID NO:31) and heavy chain
(Figure 2B) (SEQ
ID NO:35) for the anti-human sclerostin and anti-mouse sclerostin antibody Ab-
B.
Figure 3 depicts the amino acid sequences of the mature form (signal peptides
cleaved off) of the light chain (Figure 3A) (SEQ ID NO:15) and heavy chain
(Figure 3B) (SEQ
ID NO:19) for the anti-human sclerostin and anti-mouse sclerostin antibody Ab-
C.
Figure 4 depicts the amino acid sequences of the mature form (signal peptides
cleaved off) of the light chain (Figure 4A) (SEQ ID NO:7) and heavy chain
(Figure 4B) (SEQ
ID NO:11) for the anti-human sclerostin and anti-mouse sclerostin antibody Ab-
D.
Figure 5 depicts bone mineral density in mice measured at two skeletal sites
(lumbar vertebrae and tibial metaphysis) after 3 weeks of treatment with
vehicle, PTH (1-34),
Ab-A or Ab-B.
Figure 6 shows bone mineral density in mice measured at two skeletal sites
(lumbar vertebrae and tibial metaphysis) after 2 weeks of treatment with
vehicle, PTH (1-34) or
Ab-C.
Figure 7 depicts bone mineral density in mice measured at two skeletal sites
(lumbar vertebrae and tibial metaphysis) after 3 weeks of treatment with
vehicle or Ab-D.
Figure 8 depicts the amino acid sequence of the mature form (signal peptide
cleaved off) of human sclerostin (SEQ ID NO:1). Also depicted is the
nucleotide sequence of
the human sclerostin coding region that encodes the mature form of human
sclerostin. The eight
cysteines are numbered Cl through C8. The cystine-knot is formed by three
disulfide bonds
(C1-05; C3-C7; C4-C8). C2 and C6 also form a disulfide bond, however this
disulfide is not
part of the cystine-knot.
Figure 9 depicts a schematic of the basic structure of human sclerostin. There
is
an N-terminal arm (from the first Q to Cl) and a C-terminal arm (from C8 to
the terminal Y). In
between these arms there is the cystine-knot structure (formed by three
disulfides: C1-05; C3-
C7; C4-C8) and three loops which are designated Loop1, Loop 2 and Loop 3. The
distal regions
of Loop 1 and Loop 3 are linked by the C2-C6 disulfide. Potential trypsin
cleavage sites are
indicated (arginine=R and lysine=K). Some of the potential AspN cleavage sites
are indicated
(only aspartic acid (D) residues are shown).
9

CA 02947080 2016-11-01
Figure 10 depicts the HPLC peptide maps of human sclerostin after digestion
with either trypsin or AspN. The human sclerostin peptides generated by
trypsin digestion are
indicated (T19.2, T20, T20.6 and T21-22) as are the human sclerostin peptides
generated by
AspN digestion (AspN14.6, AspN18.6 and AspN22.7-23.5).
Figure 11 depicts sequence and mass information for the isolated human
sclerostin disulfide linked peptides generated by trypsin digestion. Seq. pos.
= sequence
position. Obs. = observed. Observed mass was determined by ESI-LC-MS analysis.

Figure 12 depicts sequence and mass information for the isolated human
sclerostin peptides generated by AspN digestion. The AspN22.7-23.5 peptide
contains the 4
disulfide bonds. Seq. pos. = sequence position. Ohs. = observed. Observed mass
was
determined by ESI-LC-MS analysis.
Figure 13 shows a linear schematic of four human sclerostin peptides (T19.2,
T20, T20.6 and T21-22) generated by trypsin digestion.
Figure 14 shows a linear schematic of five human sclerostin peptides
(AspN14.6,
AspN18.6 and AspN22.7-23.5) generated by AspN digestion. The AspN14.6 HPLC
peak is
composed of three peptides not linked by any disulfide bonds.
Figure 15 shows the resonance unit (Ru) signal from the Biacore-based "human
sclerostin peptide epitope competition binding assay." Relative Mab binding to
various human
sclerostin-peptides (in solution) versus Mab binding to intact mature form
human sclerostin
(immobilized on Biacore chip) was assessed. Data shown is for Ab-A. Human
sclerostin
peptides used were T19.2, T20, T20.6, T21-22, AspN14.6, AspN18.6 and AspN22.7-
23.5.
Figure 16 shows the resonance unit (Ru) signal from the Biacore-based "human
sclerostin peptide epitope competition binding assay" Relative Mab binding to
various human
sclerostin-peptides (in solution) versus Mab binding to intact mature form
human sclerostin
(immobilized on Biacore chip) was assessed. Data shown is for Ab-B. Human
sclerostin
peptides used were T19.2, T20, T20.6, T21-22, AspN14.6, AspN18.6 and AspN22.7-
23.5.
Figure 17 shows the resonance unit (Ru) signal from the Biacore-based "human
sclerostin peptide epitope competition binding assay." Relative Mab binding to
various human
sclerostin-peptides (in solution) versus Mab binding to intact mature form
human sclerostin
(immobilized on Biacore chip) was assessed. Data shown is for Ab-C. Human
sclerostin
peptides used were T19.2, T20, T20.6, T21-22, AspN14.6, AspN18.6 and AspN22.7-
23.5.
Figure 18 shows the resonance unit (Ru) signal from Biacore-based "human
sclerostin peptide epitope competition binding assay." Relative Mab binding to
various human
sclerostin-peptides (in solution) versus Mab binding to intact mature form
human sclerostin

CA 02947080 2016-11-01
(immobilized on Biacore chip) was assessed. Data shown is for Ab-D. Human
sclerostin
peptides used were T19.2, T20, T20.6, T21-22, AspN14.6, AspN18.6 and AspN22.7-
23.5.
Figure 19 shows two Mab binding epitopes of human sclerostin. Figure 19A
shows sequence of the Loop 2 epitope for binding of Ab-A and Ab-B to human
sclerostin (SEQ
ID NO:6). Figure 19B shows sequence, disulfide bonding and schematic of the
T20.6 epitope
for binding of Ab-C and Ab-D to human sclerostin (SEQ ID NO:2-5).
Figure 20 depicts the HPLC peptide maps of human sclerostin after digestion
with trypsin. Figure 20A shows digestion of the human sclerostin Ab-D complex.
Figure 20B
shows digestion of human sclerostin alone. The T19.2, T20, T20.6 and T21-22
peptide peaks
are indicated.
Figure 21 shows the sequence, disulfide bonding and schematic of the
"T20.6 derivative 1 (cystine-knot + 4 arms)" epitope for binding of Ab-D to
human
sclerostin. (SEQ ID NO:70-73).
Figure 22 shows results from the MC3T3-E1-BF osteoblast cell line
mineralization assay used for identifying anti-sclerostin neutralizing Mabs.
Mouse
sclerostin (Sc) was used at 1 g/ml. Monoclonal antibodies were used at 10 and
5 jug/ml.
Extent of mineralization (various types of insoluble calcium phosphate) was
quantitated by
measuring calcium.
Figure 23 depicts results from the MC3T3-E1-BF osteoblast cell line
mineralization assay used for identifying anti-sclerostin neutralizing Mabs.
Human sclerostin
(Sc!) was used at 1 g/ml. Monoclonal antibodies were used at 8 and 4 g/ml.
Extent of
mineralization (various types of insoluble calcium phosphate) was quantitated
by measuring
calcium.
Figure 24 shows results from the MC3T3-E1-BF osteoblast cell line
mineralization assay used for identifying anti-sclerostin neutralizing Mabs.
Human sclerostin
(Sc!) was used at 1 g/ml. Monoclonal antibodies were used at 10 tig/ml.
Extent of
mineralization (various types of insoluble calcium phosphate) was quantitated
by measuring
calcium.
Figure 25 depicts results from an inflammation-induced bone loss SCID mouse
model. Ab-A treatment protected mice from inflammation-related bone loss
associated with
colitis when measured as total bone mineral density (Figure 25A), vertebral
bone density (Figure
25B), and femur bone density (Figure 25C).
11

CA 02947080 2016-11-01
DETAILED DESCRIPTION
The present invention relates to regions of the human sclerostin protein that
contain epitopes recognized by antibodies that also bind to full-length
sclerostin, and methods of
making and using these epitopes. The invention also provides binding agents
(such as
antibodies) that specifically bind to sclerostin or portions of sclerostin,
and methods for using
such binding agents. The binding agents are useful to block or impair binding
of human
sclerostin to one or more ligand.
Recombinant human sclerostin/SOST is commercially available from R&D
Systems (Minneapolis, MN, USA; 2006 cat# 1406-ST-025). Additionally,
recombinant mouse
sclerostin/SOST is commercially available from R&D Systems (Minneapolis, MN,
USA; 2006
cat# 1589-ST-025). Research grade sclerostin binding monoclonal antibodies are
commercially
available from R&D Systems (Minneapolis, MN, USA; mouse monoclonal: 2006 cat#
MAB1406; rat monoclonal: 2006 cat# MAB1589). U.S. Patent Nos. 6,395,511 and
6,803,453,
and U.S. Patent Publications 20040009535 and 20050106683 refer to anti-
sclerostin antibodies
generally.
As used herein, the term human sclerostin is intended to include the protein
of
SEQ ID NO:1 and allelic variants thereof. Sclerostin can be purified from 293T
host cells that
have been transfected by a gene encoding sclerostin by elution of filtered
supernatant of host cell
culture fluid using a Heparin HP column, using a salt gradient. The
preparation and further
purification using cation exchange chromatography are described in Examples 1
and 2.
Binding agents of the invention are preferably antibodies, as defined herein.
The
term "antibody" refers to an intact antibody, or a binding fragment thereof.
An antibody may
comprise a complete antibody molecule (including polyclonal, monoclonal,
chimeric,
humanized, or human versions having full length heavy and/or light chains), or
comprise an
antigen binding fragment thereof. Antibody fragments include F(ab')2, Fab,
Fab', Fv, Fc, and
Fd fragments, and can be incorporated into single domain antibodies, single-
chain antibodies,
maxibodies, minibodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR
and bis-scFv
(See e.g.õ Hollinger and Hudson, 2005, Nature Biotechnology, 23, 9, 1126-
1136). Antibody
polypeptides are also disclosed in U. S. Patent No. 6,703,199, including
fibronectin polypeptide
monobodies. Other antibody polypeptides are disclosed in U.S. Patent
Publication
2005/0238646, which are single-chain polypeptides.
Antigen binding fragments derived from an antibody can be obtained, for
example, by proteolytic hydrolysis of the antibody, for example, pepsin or
papain digestion of
12

CA 02947080 2016-11-01
whole antibodies according to conventional methods. By way of example,
antibody fragments
can be produced by enzymatic cleavage of antibodies with pepsin to provide a
5S fragment
termed F(ab')2. This fragment can be further cleaved using a thiol reducing
agent to produce
3.5S Fab' monovalent fragments. Optionally, the cleavage reaction can be
performed using a
blocking group for the sulfhydryl groups that result from cleavage of
disulfide linkages. As an
alternative, an enzymatic cleavage using papain produces two monovalent Fab
fragments and an
Fc fragment directly. These methods are described, for example, by Goldenberg,
U.S. Patent
No. 4,331,647, Nisonoff et al., Arch. Biochem. Biophys. 89:230, 1960; Porter,
Biochem. J.
73:119, 1959; Edelman et al., in Methods in Enzymology 1:422 (Academic Press
1967); and by
Andrews, S.M. and Titus, J.A. in Current Protocols in Immunology (Coligan
J.E., et al., eds),
John Wiley & Sons, New York (2003). pages 2.8.1-2.8.10 and 2.10A.1-2.10A.5.
Other methods
for cleaving antibodies, such as separating heavy chains to form monovalent
light-heavy chain
fragments (Pd), further cleaving of fragments, or other enzymatic, chemical,
or genetic
techniques may also be used, so long as the fragments bind to the antigen that
is recognized by
the intact antibody.
An antibody fragment may also be any synthetic or genetically engineered
protein. For example, antibody fragments include isolated fragments consisting
of the light
chain variable region, "Fv" fragments consisting of the variable regions of
the heavy and light
chains, recombinant single chain polypeptide molecules in which light and
heavy variable
regions are connected by a peptide linker (scFv proteins).
Another form of an antibody fragment is a peptide comprising one or more
complementarity determining regions (CDRs) of an antibody. CDRs (also termed
"minimal
recognition units", or "hypervariable region") can be obtained by constructing
polynucleotides
that encode the CDR of interest. Such polynucleotides are prepared, for
example, by using the
polymerase chain reaction to synthesize the variable region using mRNA of
antibody-producing
cells as a template (see, for example, Larrick et al., Methods: A Companion to
Methods in
Enzymology 2:106, 1991; Courtenay-Luck, "Genetic Manipulation of Monoclonal
Antibodies,"
in Monoclonal Antibodies: Production, Engineering and Clinical Application,
Ritter et al.
(eds.), page 166 (Cambridge University Press 1995); and Ward et al., "Genetic
Manipulation
and Expression of Antibodies," in Monoclonal Antibodies: Principles and
Applications, Birch
et al., (eds.), page 137 (Wiley-Liss, Inc. 1995)).
Thus, in one embodiment, the binding agent comprises at least one CDR as
described herein. The binding agent may comprise at least two, three, four,
five or six CDR's as
described herein. The binding agent further may comprise at least one variable
region domain of
13

CA 02947080 2016-11-01
an antibody described herein. The variable region domain may be of any size or
amino acid
composition and will generally comprise at least one CDR sequence responsible
for binding to
human sclerostin, for example CDR-H1, CDR-H2, CDR-H3 and/or the light chain
CDRs
specifically described herein and which is adjacent to or in frame with one or
more framework
sequences. In general terms, the variable (V) region domain may be any
suitable arrangement of
immunoglobulin heavy (VH) and/or light (VL) chain variable domains. Thus, for
example, the V
region domain may be monomeric and be a VH or VL domain, which is capable of
independently
binding human sclerostin with an affinity at least equal to 1 x 10-7M or less
as describedbelow.
Alternatively, the V region domain may be dimeric and contain VH-VH, VirVI, or
Vt.,-111,
dimers. The V region dimer comprises at least one VH and at least one VL,
chain that may be
non-covalently associated (hereinafter referred to as Fv). If desired, the
chains may be
covalently coupled either directly, for example via a disulfide bond between
the two variable
domains, or through a linker, for example a peptide linker, to form a single
chain Fv (scFv).
The variable region domain may be any naturally occurring variable domain or
an
engineered version thereof. By engineered version is meant a variable region
domain that has
been created using recombinant DNA engineering techniques. Such engineered
versions include
those created, for example, from a specific antibody variable region by
insertions, deletions, or
changes in or to the amino acid sequences of the specific antibody. Particular
examples include
engineered variable region domains containing at least one CDR and optionally
one or more
framework amino acids from a first antibody and the remainder of the variable
region domain
from a second antibody.
The variable region domain may be covalently attached at a C-terminal amino
acid to at least one other antibody domain or a fragment thereof. Thus, for
example, a VET
domain that is present in the variable region domain may be linked to an
immunoglobulin CH1
domain, or a fragment thereof. Similarly a VL domain may be linked to a CK
domain or a
fragment thereof. In this way, for example, the antibody may be a Fab fragment
wherein the
antigen binding domain contains associated VH and VL domains covalently linked
at their
C-termini to a CHI and CK domain, respectively. The CHI domain may be extended
with
further amino acids, for example to provide a hinge region or a portion of a
hinge region domain
as found in a Fab' fragment, or to provide further domains, such as antibody
CH2 and CH3
domains.
As described herein, binding agents comprise at least one of these CDRs. For
example, one or more CDR may be incorporated into known antibody framework
regions (IgGl,
IgG2, etc.), or conjugated to a suitable vehicle to enhance the half-life
thereof. Suitable vehicles
14

CA 02947080 2016-11-01
include, but are not limited to Pc, polyethylene glycol (PEG), albumin,
transferrin, and the like.
These and other suitable vehicles are known in the art. Such conjugated CDR
peptides may be
in monomeric, dimeric, tetrameric, or other form. In one embodiment, one or
more water-
soluble polymer is bonded at one or more specific position, for example at the
amino terminus,
of a binding agent.
In certain preferred embodiments, a binding agent comprises one or more water
soluble polymer attachments, including, but not limited to, polyethylene
glycol, polyoxyethylene
glycol, or polypropylene glycol. See, e.g., U.S. Pat. Nos. 4,640,835,
4,496,689, 4,301,144,
4,670,417, 4,791,192 and 4,179,337. In certain embodiments, a derivative
binding agent
comprises one or more of monomethoxy-polyethylene glycol, dextran, cellulose,
or other
carbohydrate based polymers, poly-(N-vinyl pyrrolidone)-polyethylene glycol,
propylene glycol
hom*opolymers, a polypropylene oxide/ethylene oxide co-polymer,
polyoxyethylated polyols
(e.g., glycerol) and polyvinyl alcohol, as well as mixtures of such polymers.
In certain
embodiments, one or more water-soluble polymer is randomly attached to one or
more side
chains. In certain embodiments, PEG can act to improve the therapeutic
capacity for a binding
agent, such as an antibody. Certain such methods are discussed, for example,
in U.S. Pat. No.
6,133,426.
It will be appreciated that a binding agent of the present invention may have
at
least one amino acid substitution, providing that the binding agent retains
binding specificity.
Therefore, modifications to the binding agent structures are encompassed
within the scope of the
invention. These may include amino acid substitutions, which may be
conservative or non-
conservative, that do not destroy the sclerostin binding capability of a
binding agent.
Conservative amino acid substitutions may encompass non-naturally occurring
amino acid
residues, which are typically incorporated by chemical peptide synthesis
rather than by synthesis
in biological systems. These include peptidomimetics and other reversed or
inverted forms of
amino acid moieties. A conservative amino acid substitution may also involve a
substitution of
a native amino acid residue with a normative residue such that there is little
or no effect on the
polarity or charge of the amino acid residue at that position.
Non-conservative substitutions may involve the exchange of a member of one
class of amino acids or amino acid mimetics for a member from another class
with different
physical properties (e.g. size, polarity, hydrophobicity, charge). Such
substituted residues may
be introduced into regions of the human antibody that are hom*ologous with non-
human
antibodies, or into the non-hom*ologous regions of the molecule.
Moreover, one skilled in the art may generate test variants containing a
single

CA 02947080 2016-11-01
amino acid substitution at each desired amino acid residue. The variants can
then be screened
using activity assays known to those skilled in the art. Such variants could
be used to gather
information about suitable variants. For example, if one discovered that a
change to a particular
amino acid residue resulted in destroyed, undesirably reduced, or unsuitable
activity, variants
with such a change may be avoided. hi other words, based on information
gathered from such
routine experiments, one skilled in the art can readily determine the amino
acids where further
substitutions should be avoided either alone or in combination with other
mutations.
A skilled artisan will be able to determine suitable variants of the
polypeptide as
set forth herein using well-known techniques. In certain embodiments, one
skilled in the art
may identify suitable areas of the molecule that may be changed without
destroying activity by
targeting regions not believed to be important for activity. In certain
embodiments, one can
identify residues and portions of the molecules that are conserved among
similar polypeptides.
In certain embodiments, even areas that may be important for biological
activity or for structure
may be subject to conservative amino acid substitutions without destroying the
biological
activity or without adversely affecting the polypeptide structure.
Additionally, one skilled in the art can review structure-function studies
identifying residues in similar polypeptides that are important for activity
or structure. In view of
such a comparison, one can predict the importance of amino acid residues in a
protein that
correspond to amino acid residues which are important for activity or
structure in similar
proteins. One skilled in the art may opt for chemically similar amino acid
substitutions for such
predicted important amino acid residues.
One skilled in the art can also analyze the three-dimensional structure and
amino
acid sequence in relation to that structure in similar polypeptides. In view
of such information,
one skilled in the art may predict the alignment of amino acid residues of an
antibody with
respect to its three dimensional structure. In certain embodiments, one
skilled in the art may
choose not to make radical changes to amino acid residues predicted to be on
the surface of the
protein, since such residues may be involved in important interactions with
other molecules.
A number of scientific publications have been devoted to the prediction of
secondary structure. See Moult J., Curr. Op. in Biotech., 7(4):422-427 (1996),
Chou et al.,
Biochemistry, 13(2):222-245 (1974); Chou et al., Biochemistry, 113(2):211-222
(1974); Chou et
al., Adv. Enzymol. Relat. Areas Mol. Biol., 47:45-148 (1978); Chou et al.,
Ann. Rev. Biochem.,
47:251-276 and Chou et al., Biophys. J., 26:367-384 (1979). Moreover, computer
programs are
currently available to assist with predicting secondary structure. One method
of predicting
secondary structure is based upon hom*ology modeling. For example, two
polypeptides or
16

CA 02947080 2016-11-01
proteins which have a sequence identity of greater than 30%, or similarity
greater than 40%
often have similar structural topologies. The recent growth of the protein
structural database
(PDB) has provided enhanced predictability of secondary structure, including
the potential
number of folds within a polypeptide's or protein's structure. See Holm et
al., Nucl. Acid. Res.,
27(1):244-247 (1999). It has been suggested (Brenner et al., Curr. Op. Struct.
Biol., 7(3):369-
376 (1997)) that there are a limited number of folds in a given polypeptide or
protein and that
once a critical number of structures have been resolved, structural prediction
will become
dramatically more accurate.
Additional methods of predicting secondary structure include "threading"
(Jones,
D., Curr. Opin. Struct. Biol., 7(3):377-87 (1997); Sippl etal., Structure,
4(1):15-19 (1996)),
"profile analysis" (Bowie et al., Science, 253:164-170 (1991); Gribskov et
al., Meth. Enzym.,
183:146-159 (1990); Gribskov etal., Proc. Nat. Acad. Sci., 84(13):4355-4358
(1987)), and
"evolutionary linkage" (See Holm, supra (1999), and Brenner, supra (1997)).
In certain embodiments, variants of binding agents include glycosylation
variants
wherein the number and/or type of glycosylation site has been altered compared
to the amino
acid sequences of a parent polypeptide. In certain embodiments, variants
comprise a greater or a
lesser number of N-linked glycosylation sites than the native protein. An N-
linked glycosylation
site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the
amino acid residue
designated as X may be any amino acid residue except proline. The substitution
of amino acid
residues to create this sequence provides a potential new site for the
addition of an N-linked
carbohydrate chain. Alternatively, substitutions which eliminate this sequence
will remove an
existing N-linked carbohydrate chain. Also provided is a rearrangement of N-
linked
carbohydrate chains wherein one or more N-linked glycosylation sites
(typically those that are
naturally occurring) are eliminated and one or more new N-linked sites are
created. Additional
preferred antibody variants include cysteine variants wherein one or more
cysteine residues are
deleted from or substituted for another amino acid (e.g., serine) as compared
to the parent amino
acid sequence. Cysteine variants may be useful when antibodies must be
refolded into a
biologically active conformation such as after the isolation of insoluble
inclusion bodies.
Cysteine variants generally have fewer cysteine residues than the native
protein, and typically
have an even number to minimize interactions resulting from unpaired
cysteines.
Desired amino acid substitutions (whether conservative or non-conservative)
can
be determined by those skilled in the art at the time such substitutions are
desired. In certain
embodiments, amino acid substitutions can be used to identify important
residues of antibodies
to sclerostin, or to increase or decrease the affinity of the antibodies to
sclerostin described
17

CA 02947080 2016-11-01
herein.
According to certain embodiments, preferred amino acid substitutions are those
which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to
oxidation, (3) alter
binding affinity for forming protein complexes, (4) alter binding affinities,
and/or (4) confer or
modify other physiochemical or functional properties on such polypeptides.
According to
certain embodiments, single or multiple amino acid substitutions (in certain
embodiments,
conservative amino acid substitutions) may be made in the naturally-occurring
sequence (in
certain embodiments, in the portion of the polypeptide outside the domain(s)
forming
intermolecular contacts). In certain embodiments, a conservative amino acid
substitution
typically may not substantially change the structural characteristics of the
parent sequence (e.g.,
a replacement amino acid should not tend to break a helix that occurs in the
parent sequence, or
disrupt other types of secondary structure that characterizes the parent
sequence). Examples of
art-recognized polypeptide secondary and tertiary structures are described in
Proteins, Structures
and Molecular Principles (Creighton, Ed., W. Freeman and Company, New York
(1984));
Introduction to Protein Structure (C. Bmnden and J. Tooze, eds., Garland
Publishing, New York,
N.Y. (1991)); and Thornton etal. Nature 354:105 (1991)
In certain embodiments, binding agents of the invention may be chemically
bonded with polymers, lipids, or other moieties.
The binding agents may comprise at least one of the CDRs described herein
incorporated into a biocompatible framework structure. In one example, the
biocompatible
framework structure comprises a polypeptide or portion thereof that is
sufficient to form a
conformationally stable structural support, or framework, or scaffold, which
is able to display
one or more sequences of amino acids that bind to an antigen (e.g., CDRs, a
variable region,
etc.) in a localized surface region. Such structures can be a naturally
occurring polypeptide or
polypeptide "fold" (a structural motif), or can have one or more
modifications, such as additions,
deletions or substitutions of amino acids, relative to a naturally occurring
polypeptide or fold.
These scaffolds can be derived from a polypeptide of any species (or of more
than one species),
such as a human, other mammal, other vertebrate, invertebrate, plant, bacteria
or virus.
Typically the biocompatible framework structures are based on protein
scaffolds
or skeletons other than immtutoglobulin domains. For example, those based on
fibronectin,
anIcyrin, lipocalin, neocarzinostain, cytochrome b, CPI zinc finger, PST1,
coiled coil, LAC-fl,
18

CA 02947080 2016-11-01
Z domain and tendramisat domains may be used (See e.g., Nygren and Uhlen,
1997, Current
Opinion in Structural Biology, 7, 463-469).
In preferred embodiments, it will be appreciated that the binding agents of
the
invention include the humanized antibodies described herein.. Humanized
antibodies such as
those described herein can be produced using techniques known to those skilled
in the art
(Zhang, W., etal., Molecular Immunology. 42(12):1445-1451, 2005; Hwang W. et
al., Methods.
36(1):35-42, 2005; Dall'Acqua WF, et al., Methods 36(1):43-60, 2005; and
Clark, M.,
Immunology Today. 2/(8):397-402, 2000).
Additionally, one skilled in the art will recognize that suitable binding
agents
include portions of these antibodies, such as one or more of CDR-H1, CDR-H2,
CDR-H3, CDR-
Ll, CDR-L2 and CDR-L3 as specifically disclosed herein. At least one of the
regions of CDR-
H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2 and CDR-L3 may have at least one amino acid

substitution, provided that the binding agent retains the binding specificity
of the non-substituted
CDR. The non-CDR portion of the binding agent may be a non-protein molecule,
wherein the
binding agent cross-blocks the binding of an antibody disclosed herein to
sclerostin and/or
neutralizes sclerostin. The non-CDR portion of the binding agent may be a non-
protein
molecule in which the binding agent exhibits a similar binding pattern to
human sclerostin
peptides in a "human sclerostin peptide epitope competition binding assay" as
that exhibited by
at least one of antibodies Ab-A, Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-
5, Ab-6, Ab-
7, Ab-8, Ab-9, Ab-10, Ab-11, Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18,
Ab-19, Ab-
20, Ab-21, Ab-22, Ab-23, and Ab-24, and/or neutralizes sclerostin. The non-CDR
portion of the
binding agent may be composed of amino acids, wherein the binding agent is a
recombinant
binding protein or a synthetic peptide, and the recombinant binding protein
cross-blocks the
binding of an antibody disclosed herein to sclerostin and/or neutralizes
sclerostin. The non-
CDR portion of the binding agent may be composed of amino acids, wherein the
binding agent
is a recombinant binding protein, and the recombinant binding protein exhibits
a similar binding
pattern to human sclerostin peptides in the human sclerostin peptide epitope
competition binding
assay (described hereinbelow) as that exhibited by at least one of the
antibodies Ab-A, Ab-B,
Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10, Ab-
11, Ab-12,
Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22, Ab-23,
and Ab-24,
and/or neutralizes sclerostin.
Where an antibody comprises one or more of CDR-H1, CDR-H2, CDR-H3,
CDR-L1, CDR-L2 and CDR-L3 as described above, it may be obtained by expression
from a
host cell containing DNA coding for these sequences. A DNA coding for each CDR
sequence
19

CA 02947080 2016-11-01
may be determined on the basis of the amino acid sequence of the CDR and
synthesized together
with any desired antibody variable region framework and constant region DNA
sequences using
oligonucleotide synthesis techniques, site-directed mutagenesis and polymerase
chain reaction
(PCR) techniques as appropriate. DNA coding for variable region frameworks and
constant
regions is widely available to those skilled in the art from genetic sequences
databases such as
GenBank . Each of the above-mentioned CDRs will be typically located in a
variable region
framework at positions 31-35 (CDR-H1), 50-65 (CDR-H2) and 95-102 (CDR-H3) of
the heavy
chain and positions 24-34 (CDR-L1), 50-56 (CDR-L2) and 89-97 (CDR-L3) of the
light chain
according to the Kabat numbering system (Kabat et al., 1987 in Sequences of
Proteins of
Immunological Interest, U.S. Department of Health and Human Services, NIH,
USA).
Once synthesized, the DNA encoding an antibody of the invention or fragment
thereof may be propagated and expressed according to any of a variety of well-
known
procedures for nucleic acid excision, ligation, transformation, and
transfection using any number
of known expression vectors. Thus, in certain embodiments expression of an
antibody fragment
may be preferred in a prokaryotic host, such as Escherichia coil (see, e.g.,
Pluckthun et al., 1989
Methods Enzymol. 178:497-515). In certain other embodiments, expression of the
antibody or a
fragment thereof may be preferred in a eukaryotic host cell, including yeast
(e.g.,
Saccharomyces cerevisiae,Schizosaccharontyces pombe, and Pichia pastoris),
animal cells
(including mammalian cells) or plant cells. Examples of suitable animal cells
include, but are
not limited to, myeloma (such as a mouse NSO line), COS, CHO, or hybridoma
cells. Examples
of plant cells include tobacco, corn, soybean, and rice cells.
One or more replicable expression vectors containing DNA encoding an antibody
variable and/or constant region may be prepared and used to transform an
appropriate cell line,
for example, a non-producing myeloma cell line, such as a mouse NSO line or a
bacteria, such
as E. coil, in which production of the antibody will occur. In order to obtain
efficient
transcription and translation, the DNA sequence in each vector should include
appropriate
regulatory sequences, particularly a promoter and leader sequence operatively
linked to the
variable domain sequence. Particular methods for producing antibodies in this
way are generally
well-known and routinely used. For example, basic molecular biology procedures
are described
by Maniatis et al. (Molecular Cloning, A Laboratory Manual, 2nd ed., Cold
Spring Harbor
Laboratory, New York, 1989; see also Maniatis et al, 3rd ed., Cold Spring
Harbor Laboratory,
New York, (2001)). DNA sequencing can be performed as described in Sanger et
al. (PNAS
74:5463, (1977)) and the Amersham International plc sequencing handbook, and
site directed
mutagenesis can be carried out according to methods known in the art (Kramer
et al., Nucleic

CA 02947080 2016-11-01
Acids Res. 12:9441, (1984); Kunkel Proc. Natl. Acad. Sci. USA 82:488-92
(1985); Kunkel et al.,
Methods in EnzymoL 154:367-82 (1987); the Anglian Biotechnology Ltd handbook).

Additionally, numerous publications describe techniques suitable for the
preparation of
antibodies by manipulation of DNA, creation of expression vectors, and
transformation and
culture of appropriate cells (Mountain A and Adair, J R in Biotechnology and
Genetic
Engineering Reviews (ed. Tombs, M P, 10, Chapter 1, 1992, Intercept, Andover,
UK); "Current
Protocols in Molecular Biology", 1999, F.M. Ausubel (ed.), Wiley Interscience,
New York).
Where it is desired to improve the affinity of antibodies according to the
invention containing one or more of the above-mentioned CDRs can be obtained
by a number of
affinity maturation protocols including maintaining the CDRs (Yang et al., Mol
Biol., 254,
392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10, 779-783,
1992), use of
mutation strains of E. coll. (Low et al., J. MoL Biol., 250, 350-368, 1996),
DNA shuffling
(Patten et al., Curr. Opin. BiotechnoL, 8, 724-733, 1997), phage display
(Thompson et al., J.
MoL Biol., 256, 7-88, 1996) and sexual PCR (Crameri, et al.,Nature, 391, 288-
291, 1998). All
of these methods of affinity maturation are discussed by Vaughan et al.
(Nature Biotechnology,
16, 535-539, 1998).
Other antibodies according to the invention may be obtained by conventional
immunization and cell fusion procedures as described herein and known in the
art. Monoclonal
antibodies of the invention may be generated using a variety of known
techniques. In general,
monoclonal antibodies that bind to specific antigens may be obtained by
methods known to
those skilled in the art (see, for example, Kohler et al., Nature 256:495,
1975; Coligan et al.
(eds.), Current Protocols in Immunology,1:2.5 .12.6.7 (John Wiley & Sons
1991); U.S. Patent
Nos. RE 32,011, 4,902,614, 4,543,439, and 4,411,993; Monoclonal Antibodies,
Hybridomas: A
New Dimension in Biological Analyses, Plenum Press, Kennett, McKeam, and
Bechtol (eds.)
(1980); and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold
Spring Harbor
Laboratory Press (1988); Picksley et al., "Production of monoclonal antibodies
against proteins
expressed in E. coli," in DNA Cloning 2: Expression Systems, 2nd Edition,
Glover etal. (eds.),
page 93 (Oxford University Press 1995)). Antibody fragments may be derived
therefrom using
any suitable standard technique such as proteolytic digestion, or optionally,
by proteolytic
digestion (for example, using papain or pepsin) followed by mild reduction of
disulfide bonds
and alkylation. Alternatively, such fragments may also be generated by
recombinant genetic
engineering techniques as described herein..
Monoclonal antibodies can be obtained by injecting an animal, for example, a
rat,
hamster, a rabbit, or preferably a mouse, including for example a transgenic
or a knock-out, as
21

CA 02947080 2016-11-01
known in the art, with an immunogen comprising human sclerostin of SEQ ID
NO:1, or a
fragment thereof, according to methods known in the art and described herein.
The presence of
specific antibody production may be monitored after the initial injection
and/or after a booster
injection by obtaining a serum sample and detecting the presence of an
antibody that binds to
human sclerostin or peptide using any one of several immunodetection methods
known in the art
and described herein. From animals producing the desired antibodies, lymphoid
cells, most
commonly cells from the spleen or lymph node, are removed to obtain B-
lymphocytes. The B
lymphocytes are then fused with a drug-sensitized myeloma cell fusion partner,
preferably one
that is syngeneic with the immunized animal and that optionally has other
desirable properties
(e.g., inability to express endogenous Ig gene products, e.g., P3X63 - Ag
8.653 (ATCC No. CRL
1580); NSO, SP20) to produce hybridomas, which are immortal eukaryotic cell
lines. The
lymphoid (e.g., spleen) cells and the myeloma cells may be combined for a few
minutes with a
membrane fusion-promoting agent, such as polyethylene glycol or a nonionic
detergent, and
then plated at low density on a selective medium that supports the growth of
hybridoma cells but
not unfused myeloma cells. A preferred selection media is HAT (hypoxanthine,
aminopterin,
thymidine). After a sufficient time, usually about one to two weeks, colonies
of cells are
observed. Single colonies are isolated, and antibodies produced by the cells
may be tested for
binding activity to human sclerostin, using any one of a variety of
immunoassays known in the
art and described herein. The hybridomas are cloned (e.g., by limited dilution
cloning or by soft
agar plaque isolation) and positive clones that produce an antibody specific
to sclerostin are
selected and cultured. The monoclonal antibodies from the hybridoma cultures
may be isolated
from the supernatants of hybridoma cultures. An alternative method for
production of a murine
monoclonal antibody is to inject the hybridoma cells into the peritoneal
cavity of a syngeneic
mouse, for example, a mouse that has been treated (e.g., pristane-primed) to
promote formation
of ascites fluid containing the monoclonal antibody. Monoclonal antibodies can
be isolated and
purified by a variety of well-established techniques. Such isolation
techniques include affmity
chromatography with Protein-A Sepharose, size-exclusion chromatography, and
ion-exchange
chromatography (see, for example, Coligan at pages 2.7.1-2.7.12 and pages
2.9.1-2.9.3; Baines
et al., "Purification of Immunoglobulin G (IgG)," in Methods in Molecular
Biology, Vol. 10,
pages 79-104 (The Humana Press, Inc. 1992)). Monoclonal antibodies may be
purified by
affinity chromatography using an appropriate ligand selected based on
particular properties of
the antibody (e.g., heavy or light chain isotype, binding specificity, etc.).
Examples of a suitable
ligand, immobilized on a solid support, include Protein A, Protein G, an
anticonstant region
22

CA 02947080 2016-11-01
(light chain or heavy chain) antibody, an anti-idiotype antibody, and a TGF-
beta binding protein,
or fragment or variant thereof.
An antibody of the present invention may also be a human monoclonal antibody.
Human monoclonal antibodies may be generated by any number of techniques with
which those
having ordinary skill in the art will be familiar. Such methods include, but
are not limited to,
Epstein Barr Virus (EBV) transformation of human peripheral blood cells (e.g.,
containing B
lymphocytes), in vitro immunization of human B cells, fusion of spleen cells
from immunized
transgenic mice carrying inserted human immunoglobulin genes, isolation from
human
immunoglobulin V region phage libraries, or other procedures as known in the
art and based on
the disclosure herein. For example, human monoclonal antibodies may be
obtained from
transgenic mice that have been engineered to produce specific human antibodies
in response to
antigenic challenge. Methods for obtaining human antibodies from transgenic
mice are
described, for example, by Green etal., Nature Genet. 7:13, 1994; Lonberg et
al., Nature
368:856, 1994; Taylor et al., Int. lininun. 6:579, 1994; U.S. Patent No.
5,877,397; Bruggemann
et al., 1997 Curr. Opin. Biotechnol. 8:455-58; Jakobovits etal., 1995 Ann. N.
Y Acad. Set
764:525-35. In this technique, elements of the human heavy and light chain
locus are introduced
into strains of mice derived from embryonic stem cell lines that contain
targeted disruptions of
the endogenous heavy chain and light chain loci (see also Bruggemann et al.,
Curr. Opin.
Biotechnol. 8:455-58 (1997)). For example, human immunoglobulin transgenes may
be
mini-gene constructs, or transloci on yeast artificial chromosomes, which
undergo B
cell-specific DNA rearrangement and hypermutation in the mouse lymphoid
tissue. Human
monoclonal antibodies may be obtained by immunizing the transgenic mice, which
may then
produce human antibodies specific for sclerostin. Lymphoid cells of the
immunized transgenic
mice can be used to produce human antibody-secreting hybridomas according to
the methods
described herein. Polyclonal sera containing human antibodies may also be
obtained from the
blood of the immunized animals.
Another method for generating human antibodies of the invention includes
immortalizing human peripheral blood cells by EBV transformation. See, e.g.,
U.S. Patent No.
4,464,456. Such an immortalized B cell line (or lymphoblastoid cell line)
producing a
monoclonal antibody that specifically binds to sclerostin can be identified by
immunodetection
methods as provided herein, for example, an ELISA, and then isolated by
standard cloning
techniques. The stability of the lymphoblastoid cell line producing an anti-
sclerostin antibody
may be improved by fusing the transformed cell line with a murine myeloma to
produce a
mouse-human hybrid cell line according to methods known in the art (see, e.g.,
Glaslcy etal.,
23

CA 02947080 2016-11-01
Hybridonza 8:377-89 (1989)). Still another method to generate human monoclonal
antibodies is
in vitro immunization, which includes priming human splenic B cells with human
sclerostin,
followed by fusion of primed B cells with a heterohybrid fusion partner. See,
e.g., Boemer et al.,
1991 J. Immunol. 147:86-95.
In certain embodiments, a B cell that is producing an anti-human sclerostin
antibody is selected and the light chain and heavy chain variable regions are
cloned from the B
cell according to molecular biology techniques known in the art (WO 92/02551;
US patent
5,627,052; Babcook etal., Proc. Natl. Acad. Sci. USA 93:7843-48 (1996)) and
described herein.
B cells from an immunized animal may be isolated from the spleen, lymph node,
or peripheral
blood sample by selecting a cell that is producing an antibody that
specifically binds to
sclerostin. B cells may also be isolated from humans, for example, from a
peripheral blood
= sample. Methods for detecting single B cells that are producing an
antibody with the desired
specificity are well known in the art, for example, by plaque formation,
fluorescence-activated
cell sorting, in vitro stimulation followed by detection of specific antibody,
and the like.
Methods for selection of specific antibody-producing B cells include, for
example, preparing a
single cell suspension of B cells in soft agar that contains human sclerostin.
Binding of the
specific antibody produced by the B cell to the antigen results in the
formation of a complex,
which may be visible as an immunoprecipitate. After the B cells producing the
desired antibody
are selected, the specific antibody genes may be cloned by isolating and
amplifying DNA or
mRNA according to methods known in the art and described herein.
An additional method for obtaining antibodies of the invention is by phage
display. See, e.g., Winter et al., 1994 Annu. Rev. Immunol. 12:433-55; Burton
et al., 1994 Adv.
Innnunol. 57:191-280. Human or murine immunoglobulin variable region gene
combinatorial
libraries may be created in phage vectors that can be screened to select Ig
fragments (Fab, Fv,
sFv, or multimers thereof) that bind specifically to TGF-beta binding protein
or variant or
fragment thereof. See, e.g.,U U.S. Patent No. 5,223,409; Huse etal., 1989
Science 246:1275-81;
Sastry etal., Proc. Natl. Acad. Sci. USA 86:5728-32 (1989); Alting-Mees et
al., Strategies in
Molecular 'Biology 3:1-9 (1990); Kang etal., 1991 Proc. Natl. Acad. Sci. USA
88:4363-66;
Hoogenboom etal., 1992 J Molec. Biol. 227:381-388; Schlebusch et al., 1997
Hybridoma
16:47-52 and references cited therein. For example, a library containing a
plurality of
polynucleotide sequences encoding Ig variable region fragments may be inserted
into the
genome of a filamentous bacteriophage, such as M13 or a variant thereof, in
frame with the
sequence encoding a phage coat protein. A fusion protein may be a fusion of
the coat protein
with the light chain variable region domain and/or with the heavy chain
variable region domain.
24

CA 02947080 2016-11-01
According to certain embodiments, immunoglobulin Fab fragments may also be
displayed on a
phage particle (see, e.g., U.S. Patent No. 5,698,426).
Heavy and light chain immunoglobulin cDNA expression libraries may also be
prepared in lambda phage, for example, using klmmunoZapTm(H) and
XlmmunoZapTm(L)
vectors (Stratagene, La Jolla, California). Briefly, mRNA is isolated from a B
cell population,
and used to create heavy and light chain immunoglobulin cDNA expression
libraries in the
klmmunoZap(H) and kImmunoZap(L) vectors. These vectors may be screened
individually or
co-expressed to form Fab fragments or antibodies (see Huse et al., supra; see
also Sastry et al.,
supra). Positive plaques may subsequently be converted to a non-lytic plasmid
that allows high
level expression of monoclonal antibody fragments from E. coil.
In one embodiment, in a hybridoma the variable regions of a gene expressing a
monoclonal antibody of interest are amplified using nucleotide primers. These
primers may be
synthesized by one of ordinary skill in the art, or may be purchased from
commercially available
sources. (See, e.g., Stratagene (La Jolla, California), which sells primers
for mouse and human
variable regions including, among others, primers for VHa, VH137 VHcp VHd,
CH1, VI, and CL
regions.) These primers may be used to amplify heavy or light chain variable
regions, which
may then be inserted into vectors such as ImmUnoZAPTMH or Immun0ZAPTML
(Stratagene),
respectively. These vectors may then be introduced into E. coil, yeast, or
mammalian-based
systems for expression. Large amounts of a single-chain protein containing a
fusion of the VH
and VI, domains may be produced using these methods (see Bird et al., Science
242:423-426,
1988).
Once cells producing antibodies according to the invention have been obtained
using any of the above-described immunization and other techniques, the
specific antibody
genes may be cloned by isolating and amplifying DNA or mRNA therefrom
according to
standard procedures as described herein. The antibodies produced therefrom may
be sequenced
and the CDRs identified and the DNA coding for the CDRs may be manipulated as
described
previously to generate other antibodies according to the invention.
Preferably the binding agents specifically bind to sclerostin. As with all
binding
agents and binding assays, one of skill in this art recognizes that the
various moieties to which a
binding agent should not detectably bind in order to be therapeutically
effective and suitable
would be exhaustive and impractical to list. Therefore, for a binding agent
disclosed herein, the
term "specifically binds" refers to the ability of a binding agent to bind to
sclerostin, preferably
human sclerostin, with greater affinity than it binds to an unrelated control
protein. Preferably
the control protein is hen egg white lysozyme. Preferably the binding agents
bind to sclerostin

CA 02947080 2016-11-01
with an affinity that is at least, 50, 100, 250, 500, 1000, or 10,000 times
greater than the affinity
for a control protein. A binding agent may have a binding affinity for human
sclerostin of less
than or equal to 1 x 104M, less than or equal to 1 x 10-8M, less than or equal
to 1 x 109M, less
than or equal to 1 x 10"10M, less than or equal to 1 x 1041M, or less than or
equal to 1 x 1042M.
Affinity may be determined by an affinity ELISA assay. In certain embodiments,
affinity may be determined by a BIAcore assay. In certain embodiments,
affinity may be
determined by a kinetic method. In certain embodiments, affinity may be
determined by an
equilibrium/solution method. Such methods are described in further detail
herein or known in
the art.
Sclerostin binding agents of the present invention preferably Modulate
sclerostin
function in the cell-based assay described herein and/or the in vivo assay
described herein and/or
bind to one or more of the epitopes described herein and/or cross-block the
binding of one of the
antibodies described in this application and/or are cross-blocked from binding
sclerostin by one
of the antibodies described in this application. Accordingly such binding
agents can be
identified using the assays described herein.
In certain embodiments, binding agents are generated by first identifying
antibodies that bind to one more of the epitopes provided herein and/or
neutralize in the cell-
based and/or in vivo assays described herein and/or cross-block the antibodies
described in this
application and/or are cross-blocked from binding sclerostin by one of the
antibodies described
in this application. The CDR regions from these antibodies are then used to
insert into
appropriate biocompatible frameworks to generate sclerostin binding agents.
The non-CDR
portion of the binding agent may be composed of amino acids, or may be a non-
protein
molecule. The assays described herein allow the characterization of binding
agents. Preferably
the binding agents of the present invention are antibodies as defined herein.
It will be understood by one skilled in the art that some proteins, such as
antibodies, may undergo a variety of posttranslational modifications. The type
and extent of
these modifications often depends on the host cell line used to express the
protein as well as the
culture conditions. Such modifications may include variations in
glycosylation, methionine
oxidation, diketopiperizine formation, aspartate isomerization and asparagine
deamidation. A
frequent modification is the loss of a carboxy-terminal basic residue (such as
lysine or arginine)
due to the action of carboxypeptidases (as described in Harris, RJ. Journal of
Chromatography
705:129-134, 1995).
26

CA 02947080 2016-11-01
Antibodies referred to as Ab-A, Ab-B, Ab-C, Ab-D and Ab-1 are described
below. "HC" refers to the heavy chain and "LC" refers to the light chain. For
some antibodies
below, the CDRs are box shaded and the constant (C) regions are shown in bold
italics.
Ab-D =
Antibody D (also referred to herein as Ab-D and Mab-D) is a mouse antibody
which exhibits high affinity binding to sclerostin. The BIAcore binding
pattern of Ab-D is
shown in Figure 18.
The amino acid sequence of the mature form (signal peptide removed) of Ab-D
light chain:
1 DVQMIQSPSS LSASLGDIVT MTCQAS_QGTS INLNWFQQKP GICAPKLLIY0
51 "SSNLE15GVPS RFSGSRYGTD FTLTIS SLED EDLATYFalQ flSi(LPYTFGG
101 GTICLEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFYPK-DINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SY7'CEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:7)
Nucleic acid sequence encoding the mature form (signal peptide removed) of Ab-
D LC is as follows:
1 GATGTCCAGA TGATTCAGTC TCCATCCTCC CTGTCTGCAT CTTTGGGAGA
51 CATAGTCACC ATGACTTGCC AGGCAAGTCA GGGCACTAGC ATTAATTTAA
101 ACTGGTTTCA GCAAAAACCA GGGAAGGCTC CTAAGCTCCT GATCTATGGT
151 TCAAGCAACT TGGAAGATGG GGTCCCATCA AGGTTCAGTG GCAGTAGATA
201 TGGGACAGAT TTCACTCTCA CCATCAGCAG CCTGGAGGAT GAAGATCTGG
251 CAACTTATTT CTGTCTACAA CATAGTTATC TCCCGTACAC GTTCGGAGGG
301 GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GTTAG (SEQ ID
NO: 8)
The amino acid sequence of Ab-D LC including signal peptide is as follows:
1 MNTRAPAEFL GFLLLWFLGA RCDVQMIQSP SSLSASLGDI VTMTCQASQG
51 TSINLNWFQQ KPGKAPKLLI YGSSNLEDGV PSRFSGSRYG TDFTLTISSL
101 EDEDLATYFC LQHSYLPYTF GGGTKLEIKR ADAAPTVSIF PPSSEQLTSG
151 GASVVCFLNN FYPKDINVKW KIDGSERQNG VLNSWTDQDS KDSTYSMSST
201 LTLTKDEYER HNSYTCEATH KTSTSPIVKS FNRNEC (SEQ ID NO:9)
Nucleic acid sequence of Ab-D LC including signal peptide encoding sequence:
1 ATGAACACGA GGGCCCCTGC TGAGTTCCTT GGGTTCCTGT TGCTCTGGTT
51 TTTAGGTGCC AGATGTGATG TCCAGATGAT TCAGTCTCCA TCCTCCCTGT
101 CTGCATC rri GGGAGACATA GTCACCATGA CTTGCCAGGC AAGTCAGGGC
27

CA 02947080 2016-11-01
151 ACTAGCATTA ATTTAAACTG GTTTCAGCAA AAACCAGGGA AGGCTCCTAA
201 GCTCCTGATC TATGGTTCAA GCAACTTGGA AGATGGGGTC CCATCAAGGT
251 TCAGTGGCAG TAGATATGGG ACAGATTTCA CTCTCACCAT CAGCAGCCTG
301 GAGGATGAAG ATCTGGCAAC TTATTTCTGT CTACAACATA GTTATCTCCC
351 GTACACGTTC GGAGGGGGGA CCAAGCTGGA AATAAAACGG GCTGATGCTG
401 CACCAACTGT ATCCATCTTC CCACCATCCA GTGAGCAGTT AACATCTGGA
451 GGTGCCTCAG TCGTGTGCTT CTTGAACAAC TTCTACCCCA AAGACATCAA
501 TGTCAAGTGG AAGATTGATG GCAGTGAACG ACAAAATGGC GTCCTGAACA
551 GTTGGACTGA TCAGGACAGC AAAGACAGCA CCTACAGCAT GAGCAGCACC
601 CTCACGTTGA CCAAGGACGA GTATGAACGA CATAACAGCT ATACCTGTGA
651 GGCCACTCAC AAGACATCAA CTTCACC CAT TGTCAAGAGC TTCAACAGGA
701 ATGAGTGTTA G (SEQ ID NO:10)
The amino acid sequence of the mature form (signal peptide removed) of Ab-D
HC heavy chain is as follows:
1 EVQLQQSGPE LVTPGASVKI SCKASGYTFT PHYMSWVKQS HGKSLEWIGD
51 ,INPYSGETTY NWKOIATL TVDKSSSIAY MEIRGLTSED SAVYYCARDD
101 YDASPFAyWG QGTLVTVSAA KTTPPSVYPL APGSAAQTNS MVTLGCLT/KG
151 YFPEPVTVTW NSGSLSSGVH TFPAVLQSDL YTLSSSVTVP SSTWPSETVT
201 CNVAHPASST KVDKKIVPRD CGCKPCICTV PEVSSVFIFP PKPKDVLTIT
251 LTPKVTCVVV DISKDDPEVQ FSWFVDDVEV HTAQTQPREE QFNSTFRSVS
301 ELPIMINDWL NGKEFKCRVN SPAFPAPIEK TISKTKGRPK APQVYTIPPP
351 KEQMAKDKVS LTCMITDFFP EDITVEWQWN GQPAE1VYKNT QPIMDTDGSY
401 FIYSICLNVQK S1VWEAGNTFT CSVLHEGLHN HHTEKSLSHS PGK (SEQ ID NO:11)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-D HC is:
1 GAGGTCCAGC TGCAACAGTC TGGACCTGAA CTGGTGACGC CTGGGGCTTC
51 AGTGAAGATA TCTTGTAAGG CTTCTGGATA CACATTCACT GACCACTACA
101 TGAGCTGGGT GAAGCAGAGT CATGGAAAAA GCCTTGAGTG GATTGGAGAT
151 ATTAATCCCT ATTCTGGTGA AACTACCTAC AACCAGAAGT TCAAGGGCAC
201 GGCCACATTG ACTGTAGACA AGTCTTCCAG TATAGCCTAC ATGGAGATCC
251 GCGGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGAGATGAT
301 TACGACGCCT CTCCGTTTGC TTACTGGGGC CAAGGGACTC TGGTCACTGT
351 CTCTGCAGCC AAAACGACAC CCCCATCTGT CTATCCACTG GCCCCTGGAT
401 CTGCTGCCCA AACTAACTCC ATGGTGACCC TGGGATGCCT GGTCAAGGGC
451 TAMCCCTG AGCCAGTGAC AGTGACCTGG AACTCTGGAT CCCTGTCCAG
501 CGGTGTGCAC ACCTTCCCAG CTGTCCTGCA GTCTGACCTC TACACTCTGA
551 GCAGCTCAGT GACTGTCCCC TCCAGCACCT GGCCCAGCGA GACCGTCACC
601 TGCAACGTTG CCCACCCGGC CAGCAGCACC AAGGTGGACA AGAAAATTGT
651 GCCCAGGGAT TGTGGTTGTA AGCCTTGCAT ATGTACAGTC CCAGAAGTAT
701 CATCTGTCTT CATCTTCCCC CCAAAGCCCA AGGATGTGCT CACCATTACT
751 CTGACTCCTA AGGTCACGTG TGTTGTGGTA GACATCAGCA AGGATGATCC
801 CGAGGTCCAG TTCAGCTGGT TTGTAGATGA TGTGGAGGTG CACACAGCTC
851 AGACGCAACC CCGGGAGGAG CAGTTCAACA GCACTTTCCG CTCAGTCAGT
901 GAACTTCCCA TCATGCACCA GGACTGGCTC AATGGCAAGG AGTTCAAATG
951 CAGGGTCAAC AGTCCAGCTT TCCCTGCCCC CATCGAGAAA ACCATCTCCA
1001 AAACCAAAGG CAGACCGAAG GCTCCACAGG TGTACACCAT TCCACCTCCC
1051 AAGGAGCAGA TGGCCAAGGA TAAAGTCAGT CTGACCTGCA TGATAACAGA
28

CA 02947080 2016-11-01
1101 CTTCTTCCCT GAAGACATTA CTGTGGAGTG GCAGTGGAAT GGGCAGCCAG
1151 CGGAGAACTA CAAGAACACT CAGCCCATCA TGGACACAGA TGGCTCTTAC
1201 TTCATCTACA GCAAGCTCAA TGTGCAGAAG AGCAACTGGG AGGCAGGAAA
1251 TACTTTCACC TGCTCTGTGT TACATGAGGG CCTGCACAAC CACCATACTG
1301 AGAAGAGCCT CTCCCACTCT CCTGGTAAAT GA (SEQ ID NO:12)
The amino acid sequence of Ab-D HC including signal peptide is:
1 MRCRWIFLFL LSGTAGVLSE VQLQQSGPEL VTPGASVKIS CKASGYTFTD
51 HYMSWVKQSH GKSLEWIGDI NPYSGETTYN QKFKGTATLT VDKSSSIAYM
101 EIRGLTSEDS AVYYCARDDY DASPFAYWGQ GTLVTVSAAK TTPPSVYPLA
151 PGSAAQTNSM VTLGCLVKGY FPEPVTVTWN SGSLSSGVHT FPAVLQSDLY
201 TLSSSVTVPS STWPSETVTC NVAHPASSTK 'VDKKIVPRDC GCKPCICTVP
251 EVSSVFIFPP KPKDVLTITL TPKVTCVVVD ISKDDPEVQF SWFVDDVEVH
301 TAQTQPREEQ FNSTFRSVSE LPIMHQDWLN GKEFKCRVNS PAFPAPIEKT
351 ISKTKGRPKA PQVYTIPPPK EQMAKDKVSL TCM1TDFFPE DITVEWQWNG
401 QPAENYKNTQ PIMDTDGSYF IYSKLNVQKS NWEAGNTFTC SVLHEGLHNH
451 HTEKSLSHSP GK (SEQ ID NO:13)
The nucleic acid sequence of Ab-D HC including signal peptide encoding
sequence is:
1 ATGAGATGCA GGTGGATCTT TCTCTTTCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAGCTGC AACAGTCTGG ACCTGAACTG GTGACGCCTG
101 GGGCTTCAGT GAAGATATCT TGTAAGGCTT CTGGATACAC ATTCACTGAC
151 CACTACATGA GCTGGGTGAA GCAGAGTCAT GGAAAAAGCC TTGAGTGGAT
201 TGGAGATATT AATCCCTATT CTGGTGAAAC TACCTACAAC CAGAAGTTCA
251 AGGGCACGGC CACATTGACT GTAGACAAGT CTTCCAGTAT AGCCTACATG
301 GAGATCCGCG GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 AGATGATTAC GACGCCTCTC CGTTTGCTTA CTGGGGCCAA GGGACTCTGG
401 TCACTGTCTC TGCAGCCAAA ACGACACCCC CATCTGTCTA TCCACTGGCC
451 CCTGGATCTG CTGCCCAAAC TAACTCCATG GTGACCCTGG GATGCCTGGT
501 CAAGGGCTAT TTCCCTGAGC CAGTGACAGT GACCTGGAAC TCTGGATCCC
551 TGTCCAGCGG TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC
601 ACTCTGAGCA GCTCAGTGAC TGTCCCCTCC AGCACCTGGC CCAGCGAGAC
651 CGTCACCTGC AACGTTGCCC ACCCGGCCAG CAGCACCAAG GTGGACAAGA
701 AAATTGTGCC CAGGGATTGT GGTTGTAAGC CTTGCATATG TACAGTCCCA
751 GAAGTATCAT CTGTC1TCAT CTTCCCCCCA AAGCCCAAGG ATGTGCTCAC
801 CATTACTCTG ACTCCTAAGG TCACGTGTGT TGTGGTAGAC ATCAGCAAGG
851 ATGATCCCGA GGTCCAGTTC AGCTGG1-1-1G TAGATGATGT GGAGGTGCAC
901 ACAGCTCAGA CGCAACCCCG GGAGGAGCAG TTCAACAGCA C1T1CCGCTC
951 AGTCAGTGAA CTTCCCATCA TGCACCAGGA CTGGCTCAAT GGCAAGGAGT
1001 TCAAATGCAG GGTCAACAGT CCAGCITICC CTGCCCCCAT CGAGAAAACC
1051 ATCTCCAAAA CCAAAGGCAG ACCGAAGGCT CCACAGGTGT ACACCATTCC
1101 ACCTCCCAAG GAGCAGATGG CCAAGGATAA AGTCAGTCTG ACCTGCATGA
1151 TAACAGACTT CTTCCCTGAA GACATTACTG TGGAGTGGCA GTGGAATGGG
1201 CAGCCAGCGG AGAACTACAA GAACACTCAG CCCATCATGG ACACAGATGG
1251 CTCTTACTTC ATCTACAGCA AGCTCAATGT GCAGAAGAGC AACTGGGAGG
1301 CAGGAAATAC TTTCACCTGC TCTGTGTTAC ATGAGGGCCT GCACAACCAC
1351 CATACTGAGA AGAGCCTCTC CCACTCTCCT GGTAAATGA (SEQ ID NO:14)
29

CA 02947080 2016-11-01
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-D are as follows:
CDR-H1: DHYMS (SEQ ID NO:39)
CDR-H2: DINPYSGETTYNQKFKG (SEQ ID NO:40)
CDR-H3: DDYDASPFAY (SEQ ID NO:41)
The light chain variable region CDR sequences of Ab-D are:
CDR-Ll: QASQGTSINLN (SEQ ID NO:42)
CDR-L2: GSSNLED (SEQ ID NO:43)
CDR-L3: LQHSYLPYT (SEQ ID NO:44)
Ab-C
Antibody C (also referred to herein as Ab-C and Mab-C) is a mouse antibody
which exhibits high affinity binding to sclerostin. The BIAcore binding
pattern of Ab-C is
shown in Figure 17. The amino acid sequence of the mature form (signal peptide
removed) of
Ab-C Light Chain is as follows:
1 DIVLTQSPAS LTVSLGLRAT ISCNANSVD ,YDGDSYTVI- N- WY QQKPGQPPKL
51 LIY;AASNLES GIPARFSGNG SGT6FTLNIH P-VEEEDAVTY YCQQSNB, DPW
101 1:1,GGGTKLEI ICRADAAPTVS IFPPSSEQLT SGGASVVCFL .NNFYPKDI1VV
151 KWKIDGSERQ NGVLNSWTDQ DSKDSTYSMS STLTLTKDEY ERHNSYTCEA
201 THKTSTSPIV KSFNRNEC (SEQ ID NO:15)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-C LC is:
1 GACATTGTGC TGACCCAATC TCCAGCTTCT TTGACTGTGT CTCTAGGCCT
51 GAGGGCCACC ATCTCCTGCA AGGCCAGCCA AAGTGTTGAT TATGATGGTG
101 ATAGTTATAT GAACTGGTAC CAGCAGAAAC CAGGACAGCC ACCCAAACTC
151 CTCATCTATG CTGCATCCAA TCTAGAATCT GGGATCCCAG CCAGG _______ AG
201 TGGCAATGGG TCTGGGACAG ACTTCACCCT CAACATCCAT CCTGTGGAGG
251 AGGAGGATGC TGTAACCTAT TACTGTCAAC AAAGTAATGA GGATCCGTGG
301 ACGTTCGGTG GAGGCACCAA GCTGGAAATC AAACGGGCTG ATGCTGCACC
351 AACTGTATCC ATCTTCCCAC CATCCAGTGA GCAGTTAACA TCTGGAGGTG
401 CCTCAGTCGT GTGCTTCTTG AACAACTTCT ACCCCAAAGA CATCAATGTC
451 AAGTGGAAGA TTGATGGCAG TGAACGACAA AATGGCGTCC TGAACAGTTG
501 GACTGATCAG GACAGCAAAG ACAGCACCTA CAGCATGAGC AGCACCCTCA
551 CGTTGACCAA GGACGAGTAT GAACGACATA ACAGCTATAC CTGTGAGGCC
601 ACTCACAAGA CATCAACTTC ACCCATTGTC AAGAGCTTCA ACAGGAATGA
651 GTGTTAG (SEQ ID NO:16)
The amino acid sequence of Ab-C LC including signal peptide is:
1 METDTILLWV LLLWVPGSTG DIVLTQSPAS LTVSLGLRAT ISCKASQS'VD
51 YDGDSYMNWY QQKPGQPPKL LIYAASNLES GIPARFSGNG SGTDFTLNIH
101 PVEEEDAVTY YCQQSNEDPW TFGGGTKLEI KRADAAPTVS IFPPSSEQLT

CA 02947080 2016-11-01
151 SGGASVVCFL NNFYPKDINV KWKIDGSERQ NGVLNSWIDQ DSKDSTYSMS
201 STLTLTKDEY ERHNSYTCEA THKTSTSPIV KSFNRNEC (SEQ ID NO:17)
The nucleic acid sequence of Ab-C LC including signal peptide encoding
sequence is:
1 ATGGAGACAG ACACAATCCT GCTATGGGTG CTGCTGCTCT GGGTTCCAGG
51 CTCCACTGGT GACATTGTGC TGACCCAATC TCCAGCTTCT TTGACTGTGT
101 CTCTAGGCCT GAGGGCCACC ATCTCCTGCA AGGCCAGCCA AAGTGTTGAT
151 TATGATGGTG ATAG'TTATAT GAACTGGTAC CAGCAGAAAC CAGGACAGCC
201 ACCCAAACTC CTCATCTATG CTGCATCCAA TCTAGAATCT GGGATCCCAG
251 CCAGGTTTAG TGGCAATGGG TCTGGGACAG ACTTCACCCT CAACATCCAT
301 CCTGTGGAGG AGGAGGATGC TGTAACCTAT TACTGTCAAC AAAGTAATGA
351 GGATCCGTGG ACGTTCGGTG GAGGCACCAA GCTGGAAATC AAACGGGCTG
401 ATGCTGCACC AACTGTATCC ATCTTCCCAC CATCCAGTGA GCAGTTAACA
451 TCTGGAGGTG CCTCAGTCGT GTGCTTCTTG AACAACTTCT ACCCCAAAGA
501 CATCAATGTC AAGTGGAAGA TTGATGGCAG TGAACGACAA AATGGCGTCC
551 TGAACAGTTG GACTGATCAG GACAGCAAAG ACAGCACCTA CAGCATGAGC
601 AGCACCCTCA CGTTGACCAA GGACGAGTAT GAACGACATA ACAGCTATAC
651 CTGTGAGGCC ACTCACAAGA CATCAACTTC ACCCATTGTC AAGAGCTTCA
701 ACAGGAATGA GTGTTAG (SEQ ID NO:18)
Ab-C Heavy Chain
The amino acid sequence of the mature form (signal peptide removed) of Ab-C
HC is:
1 EVQLQQSGPE LVKPGTSVKM SCKASGYTFT DCIMN-WVKQS HGKSLEWIGD
51 TNPFNGGTTY NQKFKGKATL TVDKSSSTAY MQLNSLTSDD SAVYYCARSH
101 yymbrizvpw-D AMDYWGQGTS VTVSSAKTTP PSVYPLAPGS AAQTNSMVTL
151 GCLVKGYFPE PVTVTWNSGS LSSGVHTFPA VLQSDLYTLS SSVTVPSSTW
201 PSETVTCNVA HPASSTKVDK KIVPRDCGCK PCICTVPEVS SVFIFPPKPK
251 DVLTITLTPK VTCVVVDISK DDPEVQFSWF VDDVEVHTAQ TQPREEQFNS
301 TFRSVSELPI MHQDWLNGKE FKCRVNSAAF PAPIEKTISK TKGRPKAPQV
351 YTIPPPKEQM AKDKVSLTCM ITDFFPEDIT VEWQWNGQPA EN'YKNTQPIM
401 DTDGSYFIYS KLNVQKS1VWE AGNTFTCSVL HEGLHNI1HTE KSLSHSPGK (SEQ
ID NO:19)
The nucleic acid sequence encoding the mature form (signal peptide removed) of

Ab-C HC is as follows:
1 GAGGTCCAGC TGCAACAATC TGGACCTGAG CTGGTGAAGC CTGGGACTTC
51 AGTGAAGATG TCCTGTAAGG CTTCTGGATA CACATTCACT GACTGCTACA
101 TGAACTGGGT GAAGCAGAGC CATGGGAAGA GCCTTGAATG GATTGGAGAT
151 ATTAATCCTT TCAACGGTGG TACTACCTAC AACCAGAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AATCCTCCAG CACAGCCTAC ATGCAGCTCA
251 ACAGCCTGAC ATCTGACGAC TCTGCAGTCT ATTACTGTGC AAGATCCCAT
301 TATTACTTCG ATGGTAGAGT CCCTTGGGAT GCTATGGACT ACTGGGGTCA
351 AGGAACCTCA GTCACCGTCT CCTCAGCCAA AACGACACCC CCATCTGTCT
401 ATCCACTGGC CCCTGGATCT GCTGCCCAAA CTAACTCCAT GGTGACCCTG
451 GGATGCCTGG TCAAGGGCTA TT'TCCCTGAG CCAGTGACAG TGACCTGGAA
31

CA 02947080 2016-11-01
501 CTCTGGATCC CTGTCCAGCG GTGTGCACAC CTTCCCAGCT GTCCTGCAGT
551 CTGACCTCTA CACTCTGAGC AGCTCAGTGA CTGTCCCCTC CAGCACCTGG
601 CCCAGCGAGA CCGTCACCTG CAACGTTGCC CACCCGGCCA GCAGCACCAA
651 GGTGGACAAG AAAATTGTGC CCAGGGATTG TGGTTGTAAG CCTTGCATAT
701 GTACAGTCCC AGAAGTATCA TCTGTCTTCA TCTTCCCCCC AAAGCCCAAG
751 GATGTGCTCA CCATTACTCT GACTCCTAAG GTCACGTGTG TTGTGGTAGA
801 CATCAGCAAG GATGATCCCG AGGTCCAGTT CAGCTGGTTT GTAGATGATG
851 TGGAGGTGCA CACAGCTCAG ACGCAACCCC GGGAGGAGCA GTTCAACAGC
901 ACTTTCCGCT CAGTCAGTGA ACTTCCCATC ATGCACCAGG ACTGGCTCAA
951 TGGCAAGGAG TTCAAATGCA GGGTCAACAG TGCAGCTTTC CCTGCCCCCA
1001 TCGAGAAAAC CATCTCCAAA ACCAAAGGCA GACCGAAGGC TCCACAGGTG
1051 TACACCATTC CACCTCCCAA GGAGCAGATG GCCAAGGATA AAGTCAGTCT
1101 GACCTGCATG ATAACAGACT TCTTCCCTGA AGACATTACT GTGGAGTGGC
1151 AGTGGAATGG GCAGCCAGCG GAGAACTACA AGAACACTCA GCCCATCATG
1201 GACACAGATG GCTCTTACTT CATCTACAGC AAGCTCAATG TGCAGAAGAG
1251 CAACTGGGAG GCAGGAAATA CTTTCACCTG CTCTGTGTTA CATGAGGGCC
1301 TGCACAACCA CCATACTGAG AAGAGCCTCT CCCACTCTCC TGGTAAATGA
(SEQ ID NO:20)
The amino acid sequence of Ab-C HC including signal peptide is:
1 MGWNWIFLFL LSGTAGVYSE VQLQQSGPEL VKPGTSVKMS CKASGYTFTD
51 CYMN'WVKQSH GKSLEWIGDI NPFNGGTTYN QKFKGKATLT VDKSSSTAYM
101 QLNSLTSDDS AVYYCARSHY YFDGRVPWDA MDYWGQGTSV TVSSAKTTPP
151 SVYPLAPGSA AQTNSMVTLG CLVKGYFPEP VTVTWNSGSL SSGVHTFPAV
201 LQSDLYTLSS SVTVPSSTWP SETVTCNVAH PASSTKVDKK IVPRDCGCKP
251 CICTVPEVSS VFIFPPKPICD VLTITLTPKV TCVVVDISICD DPEVQFSWFV
301 DDVEVHTAQT QPREEQFNST FRSVSELPIM HQDWLNGKEF KCRVNSAAFP
351 APIEKTISKT KGRPKAPQVY TIPPPKEQMA KDKVSLTCMI TDFFPEDITV
401 EWQWNGQPAE NYKNTQPIMD TDGSYFIYSK LNVQKSNWEA GNTFTCSVLH
451 EGLIINHHTEK SLSHSPGK (SEQ ID NO:21)
The nucleic acid sequence of Ab-C HC including signal peptide encoding
sequence is:
1 ATGGGATGGA ACTGGATCTT TCTCTTCCTC TTGTCAGGAA CTGCAGGTGT
51 CTACTCTGAG GTCCAGCTGC AACAATCTGG ACCTGAGCTG GTGAAGCCTG
101 GGACTTCAGT GAAGATGTCC TGTAAGGCTT CTGGATACAC ATTCACTGAC
151 TGCTACATGA ACTGGGTGAA GCAGAGCCAT GGGAAGAGCC TTGAATGGAT
201 TGGAGATATT AATCCTTTCA ACGGTGGTAC TACCTACAAC CAGAAGTTCA
251 AGGGCAAGGC CACATTGACT GTAGACAAAT CCTCCAGCAC AGCCTACATG
301 CAGCTCAACA GCCTGACATC TGACGACTCT GCAGTCTATT ACTGTGCAAG
351 ATCCCATTAT TACTTCGATG GTAGAGTCCC TTGGGATGCT ATGGACTACT
401 GGGGTCAAGG AACCTCAGTC ACCGTCTCCT CAGCCAAAAC GACACCCCCA
451 TCTGTCTATC CACTGGCCCC TGGATCTGCT GCCCAAACTA ACTCCATGGT
501 GACCCTGGGA TGCCTGGTCA AGGGCTATTT CCCTGAGCCA GTGACAGTGA
551 CCTGGAACTC TGGATCCCTG TCCAGCGGTG TGCACACCTT CCCAGCTGTC
601 CTGCAGTCTG ACCTCTACAC TCTGAGCAGC TCAGTGACTG TCCCCTCCAG
651 CACCTGGCCC AGCGAGACCG TCACCTGCAA CGTTGCCCAC CCGGCCAGCA
701 GCACCAAGGT GGACAAGAAA ATTGTGCCCA GGGATTGTGG TTGTAAGCCT
751 TGCATATGTA CAGTCCCAGA AGTATCATCT GTCTTCATCT TCCCCCCAAA
801 GCCCAAGGAT GTGCTCACCA TTACTCTGAC TCCTAAGGTC ACGTGTGTTG
32

CA 02947080 2016-11-01
851 TGGTAGACAT CAGCAAGGAT GATCCCGAGG TCCAGTTCAG CTGGTTTGTA
901 GATGATGTGG AGGTGCACAC AGCTCAGACG CAACCCCGGG AGGAGCAGTT
951 CAACAGCACT TTCCGCTCAG TCAGTGAACT TCCCATCATG CACCAGGACT
1001 GGCTCAATGG CAAGGAGTTC AAATGCAGGG TCAACAGTGC AGCTTTCCCT
1051 GCCCCCATCG AGAAAACCAT CTCCAAAACC AAAGGCAGAC CGAAGGCTCC
1101 ACAGGTGTAC ACCATTCCAC CTCCCAAGGA GCAGATGGCC AAGGATAAAG
1151 TCAGTCTGAC CTGCATGATA ACAGACTTCT TCCCTGAAGA CATTACTGTG
1201 GAGTGGCAGT GGAATGGGCA GCCAGCGGAG AACTACAAGA ACACTCAGCC
1251 CATCATGGAC ACAGATGGCT CTTACTTCAT CTACAGCAAG CTCAATGTGC
1301 AGAAGAGCAA CTGGGAGGCA GGAAATACTT TCACCTGCTC TGTGTTACAT
1351 GAGGGCCTGC ACAACCACCA TACTGAGAAG AGCCTCTCCC ACTCTCCTGG
1401 TAAATGA (SEQ ID NO:22)
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-C are as follows:
CDR-H1: DCYMN (SEQ ID NO:45)
CDR-H2: DINPFNGGTTYNQKFKG (SEQ ID NO:46)
CDR-H3: SHYYFDGRVPWDAMDY (SEQ ID NO:47)
The light chain variable region CDR sequences of Ab-C are:
CDR-L1: KASQSVDYDGDSYMN (SEQ ID NO:48)
CDR-L2: AASNLES (SEQ ID NO:49)
CDR-L3: QQSNEDPWT (SEQ ID NO:50)
Ab-A
Antibody A (also referred to herein as Ab-A and Mab-A) is a rabbit-mouse
chimeric antibody which exhibits high affinity binding to sclerostin. The
BIAcore binding
pattern of Ab-A is shown in Figure 15.
Ab-A Light Chain
The amino acid sequence of the mature form (signal peptide removed) of Ab-A
LC:
1 AQVLTQTPAS VSAAVGGTVT INCQSSQSVY DNNWLAWFQQ KPGQPPKLLI
51 YDASDLASGV PSRFSGSGSG TQFTLTISGV QCADAATYYC QGAyNDVIYA
101 FdGGTEVVVK RTDAAPTVSI FPPSSEQLTS GGASVVCFLN NkYPIWINVK
.151 WKIDGSERQN GVLNSWTDQD SKDSTYSMSS TLTLTRDEYE RHNSYTCEAT
201 HKTSTSPIVK SFNRNEC (SEQ ID NO:23)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-A LC:
1 GCGCAAGTGC TGACCCAGAC TCCAGCCTCC GTGTCTGCAG CTGTGGGAGG
33

CA 02947080 2016-11-01
51 CACAGTCACC ATCAATTGCC AGTCCAGTCA GAGTG'ITI AT GATAACAACT
101 GGTTAGCCTG GTTTCAGCAG AAACCAGGGC AGCCTCCCAA GCTCCTGATT
151 TATGATGCAT CCGATCTGGC ATCTGGGGTC CCATCGCGGT TCAGTGGCAG
201 TGGATCTGGG ACACAGTTCA CTCTCACCAT CAGCGGCGTG CAGTGTGCCG
251 ATGCTGCCAC TTACTACTGT CAAGGCGCTT ATAATGATGT TA rri ATGCT
301 TTCGGCGGAG GGACCGAGGT GGTGGTCAAA CGTACGGATG CTGCACCAAC
351 TGTATCCATC TTCCCACCAT CCAGTGAGCA GTTAACATCT GGAGGTGCCT
401 CAGTCGTGTG CTTCTTGAAC AACTTCTACC CCAAAGACAT CAATGTCAAG
451 TGGAAGATTG ATGGCAGTGA ACGACAAAAT GGCGTCCTGA ACAGTTGGAC
501 TGATCAGGAC AGCAAAGACA GCACCTACAG CATGAGCAGC ACCCTCACGT
551 TGACCAAGGA CGAGTATGAA CGACATAACA GCTATACCTG TGAGGCCACT
601 CACAAGACAT CAACTTCACC CATTGTCAAG AGCTTCAACA GGAATGAGTG
651 TTAG (SEQ ID NO:24)
The amino acid sequence of Ab-A LC including signal peptide is:
1 MDTRAPTQLL GLILLWLPGA TFAQVLTQTP ASVSAAVGGT VTINCQSSQS
51 VYDNNWLAWF QQKPGQPPICL LIYDASDLAS GVPSRFSGSG SGTQFTLTIS
101 GVQCADAATY YCQGAYNDV1YAFGGGTEVV VICRTDAAPTV SIFPPSSEQL
151 TSGGASVVCF LNNEYPKDIN VKWKIDGSER QNGVLNSWTD QDSKDSTYSM
201 SSTLTLTKDE YERHNSYTCE ATEIKTSTSPI VKSFNRNEC (SEQ ID NO:25)
The nucleic acid sequence of Ab-A LC including signal peptide encoding
sequence is:
1 ATGGACACGA GGGCCCCCAC TCAGCTGCTG GGGCTCCTGC TGCTCTGGCT
51 CCCAGGTGCC ACATTTGCGC AAGTGCTGAC CCAGACTCCA GCCTCCGTGT
101 CTGCAGCTGT GGGAGGCACA GTCACCATCA AT'TGCCAGTC CAGTCAGAGT
151 G __ mATGATA ACAACTGGTT AGCCTGGTTT CAGCAGAAAC CAGGGCAGCC
201 TCCCAAGCTC CTGATTTATG ATGCATCCGA TCTGGCATCT GGGGTCCCAT
251 CGCGGTTCAG TGGCAGTGGA TCTGGGACAC AGTTCACTCT CACCATCAGC
301 GGCGTGCAGT GTGCCGATGC TGCCACTTAC TACTGTCAAG GCGCTTATAA
351 TGATGTTATT TATGCTTTCO GCGGAGGGAC CGAGGTGGTG GTCAAACGTA
401 CGGATGCTGC ACCAACTGTA TCCATCTTCC CACCATCCAG TGAGCAGTTA
451 ACATCTGGAG GTGCCTCAGT CGTGTGCTTC TTGAACAACT TCTACCCCAA
501 AGACATCAAT GTCAAGTGGA AGATTGATGG CAGTGAACGA CAAAATGGCG
551 TCCTGAACAG TTGGACTGAT CAGGACAGCA AAGACAGCAC CTACAGCATG
601 AGCAGCACCC TCACGTTGAC CAAGGACGAG TATGAACGAC ATAACAGCTA
651 TACCTGTGAG GCCACTCACA AGACATCAAC TTCACCCATT GTCAAGAGCT
701 TCAACAGGAA TGAGTGTTAG (SEQ ID NO:26)
The amino acid sequence of the mature form (signal peptide removed) of Ab-A
HC is:
1 QSLEESGGRL VTPGTPLTLT CTASGFSLSS YWMNWVRQAP GEGLEWIGTI
51 DSGGRTDYAS WAkGRFTISR TSTTMDLKMT SLTTGDTARY FCARNWNLWG
101 QGTLVTVSSA STKGPSVYPL APGSAAQT1VS MYTLGCLVKG YFPEPVTVTW
151 NSGSLSSGVH TFPAVLQSDL YTLSSSVTVP SSTWPSETVT CNVAHPASST
201 KVDKKIVPRD CGCKPCICTV PEVSSVFIFP PKPKDYLTIT LTPKV7'CVVV
251 DISKDDPEVQ FSWFVDDVEV HTAQTQPREE QFNSTFRSVS ELP111111QDWL
301 NGKEFKCRVN SAAFPAPIEK TISKTKGRPK APQVYTTPPP KEQ1ITAKDKVS
351 LTCMITDFFP EDITVEWQWN GQPAElVYKNT QPlitINTNGSY FVYSKL1VVQK
34

CA 02947080 2016-11-01
401 SNWEAGNTFT CSVLHEGLHN HHTEKSLSHS PGK (SEQ ID NO:27)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-A HC:
1 CAGTCGCTGG AGGAGTCCGG GGGTCGCCTG GTCACGCCTG GGACACCCCT
51 GACACTCACC TGCACAGCCT CTGGATTCTC CCTCAGTAGT TATTGGATGA
101 ACTGGGTCCG CCAGGCTCCA GGGGAGGGGC TGGAATGGAT CGGAACCATT
151 GATTCTGGTG GTAGGACGGA CTACGCGAGC TGGGCAAAAG GCCGATTCAC
201 CATCTCCAGA ACCTCGACTA CGATGGATCT GAAAATGACC AGTCTGACGA
251 CCGGGGACAC GGCCCGTTAT TTCTGTGCCA GAAATTGGAA CTTGTGGGGC
301 CAAGGCACCC TCGTCACCGT CTCGAGCGCT TCTACAAAGG GCCCATCTGT
351 CTATCCACTG GCCCCTGGAT CTGCTGCCCA AACTAACTCC ATGGTGACCC
401 TGGGATGCCT GGTCAAGGGC TATTTCCCTG AGCCAGTGAC AGTGACCTGG
451 AACTCTGGAT CCCTGTCCAG CGGTGTGCAC ACCTTCCCAG CTGTCCTGCA
501 GTCTGACCTC TACACTCTGA GCAGCTCAGT GACTGTCCCC TCCAGCACCT
551 GGCCCAGCGA GACCGTCACC TGCAACGTTG CCCACCCGGC CAGCAGCACC
601 AAGGTGGACA AGAAAATTGT GCCCAGGGAT TGTGGTTGTA AGCCTTGCAT
651 ATGTACAGTC CCAGAAGTAT CATCTGTCTT CATCTTCCCC CCAAAGCCCA
701 AGGATGTGCT CACCATTACT CTGACTCCTA AGGTCACGTG TGTTGTGGTA
751 GACATCAGCA AGGATGATCC CGAGGTCCAG TTCAGCTGGT TTGTAGATGA
801 TGTGGAGGTG CACACAGCTC AGACGCAACC CCGGGAGGAG CAGTTCAACA
851 GCACTTTCCG CTCAGTCAGT GAACTTCCCA TCATGCACCA GGACTGGCTC
901 AATGGCAAGG AGTTCAAATG CAGGGTCAAC AGTGCAGCTT TCCCTGCCCC
951 CATCGAGAAA ACCATCTCCA AAACCAAAGG CAGACCGAAG GCTCCACAGG
1001 TGTACACCAT TCCACCTCCC AAGGAGCAGA TGGCCAAGGA TAAAGTCAGT
1051 CTGACCTGCA TGATAACAGA CTTCTTCCCT GAAGACATTA CTGTGGAGTG
1101 GCAGTGGAAT GGGCAGCCAG CGGAGAACTA CAAGAACACT CAGCCCATCA
1151 TGGACACAGA TGGCTCTTAC TTCGTCTACA GCAAGCTCAA TGTGCAGAAG
1201 AGCAACTGGG AGGCAGGAAA TACTTTCACC TGCTCTGTGT TACATGAGGG
1251 CCTGCACAAC CACCATACTG AGAAGAGCCT CTCCCACTCT CCTOGTAAAT
1301 GA (SEQ ID NO:28)
The amino acid sequence of the Ab-A HC including signal peptide is:
1 METGLRWLLL VAVLKGVHCQ SLEESGGRLV TPGTPLTLTC TASGFSLS SY
51 WMNWVRQAPG EGLEWIGTID SGGRTDYASW AKGRF'TISRT STTMDLKMTS
101 LTTGDTARYF CARNWNLWGQ GTLVTVSSAS TKGPSVYPLA PGSAAQTNSM
151 VTLGCLVKGY FPEPVTVTWN SGSLSSGVHT FPAVLQSDLY TLSSSVTVPS
201 STWPSETVTC NVAHPASSTK VDKKIVPRDC GCKPCICTVP EVSSVFIFPP
251 KPKDVLTITL TPKVTCVVVD ISKDDPEVQF S'WFVDDVEVH TAQTQPREEQ
301 FNSTFRSVSE LPIMHQDWLN GKEFKCRVNS AAFPAPIEKT ISKTKGRPKA
351 PQVYTIPPPK EQMAKDKVSL TCMITDFFPE DITVEWQWNG QPAENYKNTQ
401 PIMNTNGSYF VYSICLNVQKS NWEAGNTFTC SVLHEGLHNH HTEKSLSHSP
451 GK (SEQ LD NO:29)
The nucleic acid sequence of Ab-A HC including signal peptide encoding
sequence:
1 ATGGAGACTG GGCTGCGCTG GCTTCTCCTG GTCGCTGTGC TCAAAGGTGT
51 CCACTGTCAG TCGCTGGAGG AGTCCGGGGG TCGCCTGGTC ACGCCTGGGA
101 CACCCCTGAC ACTCACCTGC ACAGCCTCTG GATTCTCCCT CAGTAGTTAT

CA 02947080 2016-11-01
151 TGGATGAACT GGGTCCGCCA GGCTCCAGGG GAGGGGCTGG AATGGATCGG
201 AACCATTGAT TCTGGTGGTA GGACGGACTA CGCGAGCTGG GCAAAAGGCC
251 GATTCACCAT CTCCAGAACC TCGACTACGA TGGATCTGAA AATGACCAGT
301 CTGACGACCG GGGACACGGC CCGTTATTTC TGTGCCAGAA ATTGGAACTT
351 GTGGGGCCAA GGCACCCTCG TCACCGTCTC GAGCGCTTCT ACAAAGGGCC
401 CATCTGTCTA TCCACTGGCC CCTGGATCTG CTGCCCAAAC TAACTCCATG
451 GTGACCCTGG GATGCCTGGT CAAGGGCTAT TTCCCTGAGC CAGTGACAGT
501 GACCTGGAAC TCTGGATCCC TGTCCAGCGG TGTGCACACC TTCCCAGCTG
551 TCCTGCAGTC TGACCTCTAC ACTCTGAGCA GCTCAGTGAC TGTCCCCTCC
601 AGCACCTGGC CCAGCGAGAC CGTCACCTGC AACGTTGCCC ACCCGGCCAG
651 CAGCACCAAG GTGGACAAGA AAATTGTGCC CAGGGATTGT GGTTGTAAGC
701 CTTGCATATG TACAGTCCCA GAAGTATCAT CTGTCTTCAT CTTCCCCCCA
751 AAGCCCAAGG ATGTGCTCAC CATTACTCTG ACTCCTAAGG TCACGTGTGT
801 TGTGGTAGAC ATCAGCAAGG ATGATCCCGA GGTCCAGTTC AGCTGGTTTG
851 TAGATGATGT GGAGGTGCAC ACAGCTCAGA CGCAACCCCG GGAGGAGCAG
901 TTCAACAGCA C 1-11CCGCTC AGTCAGTGAA CTTCCCATCA TGCACCAGGA
951 CTGGCTCAAT GGCAAGGAGT TCAAATGCAG GGTCAACAGT GCAGCTTTCC
1001 CTGCCCCCAT CGAGAAAACC ATCTCCAAAA CCAAAGGCAG ACCGAAGGCT
1051 CCACAGGTGT ACACCATTCC ACCTCCCAAG GAGCAGATGG CCAAGGATAA
1101 AGTCAGTCTG ACCTGCATGA TAACAGACTT CTTCCCTGAA GACATTACTG
1151 TGGAGTGGCA GTGGAATGGG CAGCCAGCGG AGAACTACAA GAACACTCAG
1201 CCCATCATGG ACACAGATGG CTCTTACTTC GTCTACAGCA AGCTCAATGT
1251 GCAGAAGAGC AACTGGGAGG CAGGAAATAC TTTCACCTGC TCTGTGTTAC
1301 ATGAGGGCCT GCACAACCAC CATACTGAGA AGAGCCTCTC CCACTCTCCT
1351 GGTAAATGA (SEQ NO:30)
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-A are as follows:
CDR-H1: SYWIAN (SEQ ID NO:51)
CDR-H2: TTDSGGRTDYASWAKG (SEQ ID NO:52)
CDR-H3: NVVNL (SEQ ID NO:53)
The light chain variable region CDR sequences of Ab-A are:
CDR-L1: QSSQSVYDNNWLA (SEQ ID NO:54)
CDR-L2: DASDLAS (SEQ ID NO:55)
CDR-L3: QGAYNDVIYA (SEQ ID NO:56)
Ab-A was humanized, and is referred to as Antibody 1 (also referred to herein
as
Ab-1), having the following sequences:
The nucleic acid sequence of the Ab-1 LC variable region including signal
peptide encoding sequence is
ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGT
GCCACATTTGCTCAAGTTCTGACCCAGAGTCCAAGCAGTCTCTCCGCCAGCGTAGGC
36

CA 02947080 2016-11-01
GATCGTGTGACTATTACCTGTCAATCTAGTCAGAGCGTGTATGATAACAATTGGCTG
GCGTGGTACCAGCAAAAACCGGGCAAAGCCCCGAAGCTGCTCATCTATGACGCGTC
CGATCTGGCTAGCGGTGTGCCAAGCCGTTTCAGTGGCAGTGGCAGCGGTACTGACT
TTACCCTCACAATTTCGTCTCTCCAGCCGGAAGA11-1 CGCCACTTACTATTGTCAAG
GTGCTTACAACGATGTGATTTATGCCTTCGGTCAGGGCACTAAAGTAGAAATCAAA
CGT (SEQ ID NO:74)
The amino acid sequence of Ab-1 LC variable region including signal peptide
is:
MDTRAPTOLLGLILLWLPGATFAQVLTQSPSSLSASVGDRVTITCOSSQSVYI5NNWEA.
WYQQKPGKAPKWYDASDLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCWAYN
DVIYAFGQGTKVEIKR (SEQ ID NO:75)
The nucleic acid sequence of Ab-1 HC variable region including signal peptide
encoding
sequence is:
ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCACTGT
GAGGTGCAGCTGTTGGAGTCTGGAGGCGGGCTTGTCCAGCCTGGAGGGAGCCTGCG
TCTCTCTTGTGCAGCAAGCGGCTTCAGCTTATCCICTTACTGGATGAATTGGGTGCG
GCAGGCACCTGGGAAGGGCCIGGAGTGGGTGGGCACCATTGATTCCGGAGGCCGTA
CAGACTACGCGTCTTGGGCAAAGGGCCGTTTCACCA ______________________________ IT!
CCCGCGACAACTCCAAA
AATACCATGTACCTCCAGATGAACTCTCTCCGCGCAGAGGACACAGCACGTTATTA
CTGTGCACGCAACTGGAATCTGTGGGGTCAAGGTACTCTIGTAACAGTCTCGAGC
(SEQ ID NO:76 )
Amino acid sequence of Ab-1 HC variable region including signal peptide
METGLRWLLLVAVLKGVHCEVQLLESGGGLVQPGGSLRLSCAASGFSLSS~WVR
QAPGKGLEWVG11DSGGRVYASWAKGAFTISRDNSICNTMYLQMNSLRAEDTARYYC
ARNWNLWGQGTLVTVSS (SEQ ID NO:77 )
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-1 are as follows:
CDR-H1: SYWMN (SEQ ID NO:51)
CDR-H2: TIDSGGRTDYASWAKG (SEQ ID NO:52)
CDR-H3: NWNL (SEQ ID NO:53)
The light chain variable region CDR sequences of Ab-1 are:
CDR-L1: QSSQSVYDNNWLA (SEQ ID NO:54)
CDR-L2: DASDLAS (SEQ ID NO:55)
CDR-L3: QGAYNDVIYA (SEQ ID NO:56)
Ab-B
37

CA 02947080 2016-11-01
Antibody B (also referred to herein as Ab-B and Mab-B) is a mouse antibody
which exhibits high affinity binding to sclerostin. The BIAcore binding
pattern of Ab-B is
shown in Figure 16.
Ab-B Light Chain
The amino acid sequence of the mature form (signal peptide removed) of the Ab-
B LC is:
,
1 QIVLTQSPTI VSASPGEKVT LICSASSSVS FVDWFQQKPG TSPKRWIYRT
51 SNLGFGVPAR FSGGGSGTSH SLTISRMEAE DAATYYdQQ : STYPPTFGAG
101 TKLELKRADA APTVSIEPPS SEQLTSGGAS VVCFLNNFYP KDINVKWKID
151 GSERQNGVLN SWTDQDSKDS TYSMSSTLTL TKDEYERHNS YTCEATEKTS
201 TSPIVKSPNR NEC (SEQ ID NO:31)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-B LC is:
1 CAAATTGTTC TCACCCAGTC TCCAACAATC GTGTCTGCAT CTCCAGGGGA
51 GAAGGTCACC CTAATCTGCA GTGCCAGTTC AAGTGTAAGT TTCGTGGACT
101 GGTTCCAGCA GAAGCCAGGC ACTTCTCCCA AACGCTGGAT TTACAGAACA
151 TCCAACCTGG GTTTTGGAGT CCCTGCTCGC TTCAGTGGCG GTGGATCTGG
201 GACCTCTCAC TCTCTCACAA TCAGCCGAAT GGAGGCTGAA GATGCTGCCA
251 CTTATTACTG CCAGCAAAGG AGTACTTACC CACCCACGTT CGGTGCTGGG
301 ACCAAGCTGG AACTGAAACG GGCTGATGCT GCACCAACTG TATCCATCTT
351 CCCACCATCC AGTGAGCAGT TAACATCTGG AGGTGCCTCA GTCGTGTGCT
401 TCTTGAACAA CTTCTACCCC AAAGACATCA ATGTCAAGTG GAAGATTGAT
451 GGCAGTGAAC GACAAAATGG CGTCCTGAAC AGTTGGACTG ATCAGGACAG
501 CAAAGACAGC ACCTACAGCA TGAGCAGCAC CCTCACGTTG ACCAAGGACG
551 AGTATGAACG ACATAACAGC TATACCTGTG AGGCCACTCA CAAGACATCA
601 ACTTCACCCA TTGTCAAGAG CTTCAACAGG AATGAGTGTT AG(SEINDIND:32)
The amino acid sequence of Ab-B LC including signal peptide is:
1 MHFQVQIFSF LLISASVIVS RGQIVLTQSP TIVSASPGEK VTLICSASSS
51 VSFVDWFQQK PGTSPKRWIY RTSNLGFGVP ARFSGGGSGT SHSLTISRME
101 AEDAATYYCQ QRSTYPPTFG AGTKLELKRA DAAPTVSIFP PSSEQLTSGG
151 ASVVCFLNNF YPKDINVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL
201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC(SWIDI\10:33)
The nucleic acid sequence of Ab-B LC including signal peptide encoding
sequence is:
1 ATGCATTTTC AAGTGCAGAT TTTCAGCTTC CTGCTAATCA GTGCCTCAGT
51 CATAGTGTCC AGAGGGCAAA TTGTTCTCAC CCAGTCTCCA ACAATCGTGT
101 CTGCATCTCC AGGGGAGAAG GTCACCCTAA TCTGCAGTGC CAGTTCAAGT
151 GTAAGTTTCG TGGACTGGTT CCAGCAGAAG CCAGGCACTT CTCCCAAACG
201 CTGGATTTAC AGAACATCCA ACCTGGGTTT TGGAGTCCCT GCTCGCTTCA
251 GTGGCGGTGG ATCTGGGACC TCTCACTCTC TCACAATCAG CCGAATGGAG
301 GCTGAAGATG CTGCCACTTA TTACTGCCAG CAAAGGAGTA CTTACCCACC
38.

CA 02947080 2016-11-01
351 CACGTTCGGT GCTGGGACCA AGCTGGAACT GAAACGGGCT GATGCTGCAC
401 CAACTGTATC CATCTTCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT
451 GCCTCAGTCG TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT
501 CAAGTGGAAG ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT
551 GGACTGATCA GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC
601 ACGTTGACCA AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC
651 CACTCACAAG ACATCAACTT CACCCATTGT CAAGAGCTTC AACAGGAATG
701 AGTGTTAG(SEWEIPNID:34)
Ab-13 Heavy Chain
The amino acid sequence of the mature form (signal peptide removed) of Ab-B
HC:
1 QVTLKESGPG ILQPSQTLSL TCSFSGFSLS 4'SGMGVGWIR HPSGKNLEWL
51 AHIWWDDVKR YNpVLKSRLT ISKDTSNSQV FLKIANVDTA DTATYYCARI
101 EDFD#EEYY,AMDYWGQGTS VIVSSAKTTP PSVYPLAPGS AAQTNSMVTL
151 GCLVKGYFPE PVTVTWNSGS LSSGVHTFPA VLQSDLYTLS SSVTVPSSTW
201 PSETVTCNVA HPASSTKVDK KIVPRDCGCK PCICTVPEVS SVFIFPPKPK
251 DVICITLTPK VTCVVVDISK DDPEVQFSWF VDDVEVHTAQ TQPREEQFNS
301 TFRSVSELPI MHQDWLNGKE FKCRVNSAAF PAPIEKTISK TKGRPKAPQV
351 YTIPPPKEQMAKDEVSLTCM ITDFFPEDIT VEWQWNGQPA ENYKNTQPIM
401 DTDGSYFVYS KLNVQKSNWE AGNTFTCSVL REGLRNHHTE KSLSHSPGK(SEQ
ID NO:35)
The nucleic acid sequence encoding the mature form (signal peptide removed) of
Ab-B HC:
1 CAGGTTACTC TGAAAGAGTC TGGCCCTGGG ATATTGCAGC CCTCCCAGAC
51 CCTCAGTCTG ACTTGTTCTT TCTCTGGGTT TTCACTGAGC ACTTCTGGTA
101 TGGGTGTAGG CTGGATTCGT CACCCATCAG GGAAGAATCT GGAGTGGCTG
151 GCACACATTT GGTGGGATGA TGTCAAGCGC TATAACCCAG TCCTGAAGAG
201 CCGACTGACT ATCTCCAAGG ATACCTCCAA CAGCCAGGTA TTCCTCAAGA
251 TCGCCAATGT GGACACTGCA GATACTGCCA CATACTACTG TGCTCGAATA
301 GAGGACTTTG ATTACGACGA GGAGTATTAT GCTATGGACT ACTGGGGTCA
351 AGGAACCTCA GTCATCGTCT CCTCAGCCAA AACGACACCC CCATCTGTCT
401 ATCCACTGGC CCCTGGATCT GCTGCCCAAA CTAACTCCAT GGTGACCCTG
451 GGATGCCTGG TCAAGGGCTA TTTCCCTGAG CCAGTGACAG TGACCTGGAA
501 CTCTGGATCC CTGTCCAGCG GTGTGCACAC CTTCCCAGCT GTCCTGCAGT
551 CTGACCTCTA CACTCTGAGC AGCTCAGTGA CTGTCCCCTC CAGCACCTGG
601 CCCAGCGAGA CCGTCACCTG CAACGTTGCC CACCCGGCCA GCAGCACCAA
651 GGTGGACAAG AAAATTGTGC CCAGGGATTG TGGTTGTAAG CCTTGCATAT
701 GTACAGTCCC AGAAGTATCA TCTGTCTTCA TCTTCCCCCC AAAGCCCAAG
751 GATGTGCTCA CCATTACTCT GACTCCTAAG GTCACGTGTG TTGTGGTAGA
801 CATCAGCAAG GATGATCCCG AGGTCCAGTT CAGCTGGTTT GTAGATGATG
851 TGGAGGTGCA CACAGCTCAG ACGCAACCCC GGGAGGAGCA GTTCAACAGC
901 ACTTTCCGCT CAGTCAGTGA ACTTCCCATC ATGCACCAGG ACTGGCTCAA
951 TGGCAAGGAG TTCAAATGCA GGGTCAACAG TGCAGCTTTC CCTGCCCCCA
1001 TCGAGAAAAC CATCTCCAAA ACCAAAGGCA GACCGAAGGC TCCACAGGTG
1051 TACACCATTC CACCTCCCAA GGAGCAGATG GCCAAGGATA AAGTCAGTCT
1101 GACCTGCATG ATAACAGACT TCTTCCCTGA AGACATTACT GTGGAGTGGC
1151 AGTGGAATGG GCAGCCAGCG GAGAACTACA AGAACACTCA GCCCATCATG
39

CA 02947080 2016-11-01
1201 GACACAGATG GCTCTTACTT CGTCTACAGC AAGCTCAATG TGCAGAAGAG
1251 CAACTGGGAG GCAGGAAATA CTTTCACCTG CTCTGTGTTA CATGAGGGCC
1301 TGCACAACCA CCATACTGAG AAGAGCCTCT CCCACTCTCC TGGTAAATGA
(SEQ ID NO:36)
The amino acid sequence of Ab-B HC including signal peptide:
1 MGRLTSSFLL LIVPAYVLSQ VTLKESGPGI LQPSQTLSLT CSFSGFSLST
51 SGMGVGWIRH PSGKNLEWLA HIWWDDVKRY NPVLKSRLTI SKDTSNSQVF
101 LKIANVDTAD TATYYCARIE DFDYDEEYYA MDYWGQGTSV IVSSAKTTPP
151 SVYPLAPGSA AQTNSMVTLG CLVKGYFPEP VTVTWNSGSL SSGVHTFPAV
201 LQSDLYTLSS SVTVPSSTWP SETVTCNVAH PASSTKVDKK IVPRDCGCKP
251 CICTVPEVSS VFIFPPKPKD VLTITLTPKV TCVVVDISKD DPEVQFSWFV
301 DDVEVHTAQT QPREEQFNST FRSVSELPIM HQDWLNGKEF KCRVNSAAFP
351 APIEKTISKT KGRPKAPQVY TIPPPKEQMA KDKVSLTCMI TDFFPEDITV
401 EWQWNGQPAE NYKNTQPIMD TDGSYFVYSK LNVQKSNWEA GNTFTCSVLH
451 EGLHNHHTEK SLSHSPGK(SEQIDT4037)
The nucleic acid sequence of Ab-B HC including signal peptide encoding
agpme:
1 ATGGGCAGGC TTACTTCTTC ATTCCTGCTA CTGATTGTCC CTGCATATGT
51 CCTGTCCCAG GTTACTCTGA AAGAGTCTGG CCCTGGGATA TTGCAGCCCT
101 CCCAGACCCT CAGTCTGACT TGTTCTTTCT CTGGGTTTTC ACTGAGCACT
151 TCTGGTATGG GTGTAGGCTG GATTCGTCAC CCATCAGGGA AGAATCTGGA
201 GTGGCTGGCA CACATTTGGT GGGATGATGT CAAGCGCTAT AACCCAGTCC
251 TGAAGAGCCG ACTGACTATC TCCAAGGATA CCTCCAACAG CCAGGTATTC
301 CTCAAGATCG CCAATGTGGA CACTGCAGAT ACTGCCACAT ACTACTGTGC
351 TCGAATAGAG GACTTTGATT ACGACGAGGA GTATTATGCT ATGGACTACT
401 GGGGTCAAGG AACCTCAGTC ATCGTCTCCT CAGCCAAAAC GACACCCCCA
451 TCTGTCTATC CACTGGCCCC TGGATCTGCT GCCCAAACTA ACTCCATGGT
501 GACCCTGGGA TGCCTGGTCA AGGGCTATTT CCCTGAGCCA GTGACAGTGA
551 CCTGGAACTC TGGATCCCTG TCCAGCGGTG TGCACACCTT CCCAGCTGTC
601 CTGCAGTCTG ACCTCTACAC TCTGAGCAGC TCAGTGACTG TCCCCTCCAG
651 CACCTGGCCC AGCGAGACCG TCACCTGCAA CGTTGCCCAC CCGGCCAGCA
701 GCACCAAGGT GGACAAGAAA ATTGTGCCCA GGGATTGTGG TTGTAAGCCT
751 TGCATATGTA CAGTCCCAGA AGTATCATCT GTCTTCATCT TCCCCCCAAA
801 GCCCAAGGAT GTGCTCACCA TTACTCTGAC TCCTAAGGTC ACGTGTGTTG
851 TGGTAGACAT CAGCAAGGAT GATCCCGAGG TCCAGTTCAG CTGGTTTGTA
901 GATGATGTGG AGGTGCACAC AGCTCAGACG CAACCCCGGG AGGAGCAGTT
951 CAACAGCACT TTCCGCTCAG TCAGTGAACT TCCCATCATG CACCAGGACT
1001 GGCTCAATGG CAAGGAGTTC AAATGCAGGG TCAACAGTGC AGCTTTCCCT
1051 GCCCCCATCG AGAAAACCAT CTCCAAAACC AAAGGCAGAC CGAAGGCTCC
1101 ACAGGTGTAC ACCATTCCAC CTCCCAAGGA GCAGATGGCC AAGGATAAAG
1151 TCAGTCTGAC CTGCATGATA ACAGACTTCT TCCCTGAAGA CATTACTGTG
1201 GAGTGGCAGT GGAATGGGCA GCCAGCGGAG AACTACAAGA ACACTCAGCC
1251 CATCATGGAC ACAGATGGCT CTTACTTCGT CTACAGCAAG CTCAATGTGC
1301 AGAAGAGCAA CTGGGAGGCA GGAAATACTT TCACCTGCTC TGTGTTACAT
1351 GAGGGCCTGC ACAACCACCA TACTGAGAAG AGCCTCTCCC ACTCTCCTGG
1401 TAAATGA(SWIDIND:38)

CA 02947080 2016-11-01
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-B are as follows:
CDR-H1: TSGMGVG (SEQ ID NO:57)
CDR-H2: HIWWDDVKRYNPVLKS (SEQ ID NO:58)
CDR-H3: EDFDYDEEYYAMDY (SEQ ID NO:59)
The light chain variable region CDR sequences of Ab-B are:
CDR-L1: SASSSVSFVD (SEQ ID NO:60)
CDR-L2: RTSNLGF (SEQ ID NO:61)
CDR-L3: QQRSTYPPT (SEQ ID NO:62)
Antibodies disclosed herein bind to regions of human sclerostin which are
important for the in vivo activity of the protein. Binding of an antibody to
sclerostin can be
correlated with increases in, for example, the bone mineral density achieved
by use of the
antibody in vivo such as described in Examples 5 and 9 (mice) and Example 12
(monkey).
Increases in at least one of bone formation, bone mineral content, bone mass,
bone quality and
bone strength can also be achieved by use of the antibody in vivo such as
described in Examples
5 and 9 (mice) and Example 12 (monkey). Since the binding of an antibody to
sclerostin is
primarily determined by its CDR sequences, an antibody for practicing the
invention may be
generated with all or some of the disclosed CDR sequences in an appropriate
framework,
wherein the antibody retains the ability to bind specifically to sclerostin,
and can be expected to
achieve increases in, for example, bone mineral density. Such antibodies are
useful in the
treatment of human or animal conditions that are caused by, associated with,
or result in at least
one of low bone formation, low bone mineral density, low bone mineral content,
low bone mass,
low bone quality and low bone strength. Methods of constructing and expressing
antibodies and
fragments thereof comprising CDR's of the present invention are known to those
of skill in the
art.
The present invention therefore relates in one embodiment to an isolated
antibody, including Ab-A, or an antigen binding fragment thereof, which
specifically binds to
=
sclerostin and wherein the variable domain of the heavy chain comprises at
least one CDR
having the sequences given in SEQ ID NO:51 for CDR-H1, SEQ ID NO:52 for CDR-H2
and
SEQ ID NO:53 for CDR-H3. The antibody or antigen binding fragment thereof may
comprise a
heavy chain variable domain in which the CDRs consist of at least one of the
peptides of SEQ
ID NO:51 for CDR-H1, SEQ ID NO:52 for CDR-H2 and SEQ NO:53 for CDR-H3.
When in antibodies of the invention a light chain is present the light chain
may be
any suitable complementary chain and may in particular be selected from a
light chain wherein
41

CA 02947080 2016-11-01
the variable domain comprises at least one CDR having the sequences given in
SEQ ID NO:54
for CDR-L1, SEQ ID NO:55 for CDR-L2 and SEQ ID NO:56 for CDR-L3. The antibody
or
antigen binding fragment thereof may comprise a light chain variable domain in
which the
CDRs consist of at least one of the peptides of SEQ ID NO:54 for CDR-L1, SEQ
ID NO:55 for
CDR-L2 and SEQ ID NO:56 for CDR-L3.
The present invention further relates to an isolated antibody, including
Ab-B, or an antigen binding fragment hereof, which specifically binds to
sclerostin and wherein
the variable domain of the heavy chain comprises at least one CDR having the
sequences given
in SEQ ID NO:57 for CDR-H1, SEQ ID NO:58 for CDR-H2 and SEQ ID NO:59 for CDR-
H3.
The antibody or antigen binding fragment thereof may comprise a heavy chain
variable domain
in which the CDRs consist of at least one of the peptides of SEQ ID NO:57 for
CDR-H1, SEQ
ID NO:58 for CDR-H2 and SEQ ID NO:59 for CDR-H3.
When in antibodies of the invention a light chain is present the light chain
may be
any suitable complementary chain and may in particular be selected from a
light chain wherein
the variable domain comprises at least one CDR having the sequences given in
SEQ ID NO:60
for CDR-L1, SEQ ID NO:61 for CDR-L2 and SEQ ID NO:62 for CDR-L3. The antibody
or
antigen binding fragment thereof may comprise a light chain variable domain in
which the
CDRs consist of at least one of the peptides of SEQ ID NO:60 for CDR-L1, SEQ
ID NO:61 for
CDR-L2 and SEQ ID NO:62 for CDR-L3.
The present invention still further relates to an isolated antibody, including
Ab-C,
or an antigen binding fragment hereof, which specifically binds to sclerostin
and wherein the
variable domain of the heavy chain comprises at least one CDR having the
sequences given in
SEQ ID NO:45 for CDR-H1, SEQ ID NO:46 for CDR412 and SEQ ID NO:47 for CDR-H3.
The antibody or antigen binding fragment thereof may comprise a heavy chain
variable domain
in which the CDRs consist of at least one of the peptides of SEQ ID NO:45 for
CDR-H1, SEQ
ID NO:46 for CDR-H2 and SEQ ID NO:47 for CDR-H3.
When in antibodies of the invention a light chain is present the light chain
may be
any suitable complementary chain and may in particular be selected from a
light chain wherein
the variable domain comprises at least one CDR having the sequences given in
SEQ ID NO:48
for CDR-L1, SEQ ID NO:49 for CDR-L2 and SEQ ID NO:50 for CDR-L3. The antibody
or
antigen binding fragment thereof may comprise a light chain variable domain in
which the
CDRs consist of at least one of the peptides of SEQ ID NO:48 for CDR-L1, SEQ
ID NO:49 for
CDR-L2 and SEQ ID NO:50 for CDR-L3.
42

CA 02947080 2016-11-01
The present invention also relates to an isolated antibody, including Ab-D, or
an
antigen binding fragment hereof, which specifically binds to sclerostin and
wherein the variable
domain of the heavy chain comprises at least one CDR having the sequences
given in SEQ ID
NO:39 for CDR-H1, SEQ ID NO:40 for CDR-H2 and SEQ ID NO:41 for CDR-H3. The
antibody or antigen binding fragment thereof may comprise a heavy chain
variable domain in
which the CDRs consist of at least one of the peptides of SEQ ID NO:39 for CDR-
H1, SEQ ID
NO:40 for CDR-H2 and SEQ ID NO:41 for CDR-H3.
When in antibodies of the invention a light chain is present the light chain
may be
any suitable complementary chain and may in particular be selected from a
light chain wherein
the variable domain comprises at least one CDR having the sequences given in
SEQ ID NO:42
for CDR-L1, SEQ ID NO:43 for CDR-L2 and SEQ ID NO:44 for CDR-L3. The antibody
or
antigen binding fragment thereof may comprise a light chain variable domain in
which the
CDRs consist of at least one of the peptides of SEQ ID NO:42 for CDR-L1, SEQ
ID NO:43 for
CDR-L2 and SEQ ID NO:44 for CDR-L3.
Additional anti-sclerostin antibodies are described below. For some of the
amino acid
sequences the complementarity-determining regions (CDRs) are boxed-shaded and
the constant
regions are in bold-italics.
Ab-2
The sequences of the Antibody 2 (also referred to as Ab-2) LC and HC are as
follows:
Ab-2 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-2
LC:
1 QIVLSQSPAI LSTSPGEKVT MTCRASSSVY ylVIHWYQQKPG SSPKPWIYAT
51 SNLA.¨gGVPVR FSGSGSGTSY SLTITkVEAEDAATYYCQQW SDPLTFG.AG
101 TkLELKRADA APTVSIFPPS SEQLTSGGAS VVCFLNNFYP KDINT4WKID
151 GSERQNGVLN SWTDQDSKDS TYSMSSTLTL TKDEYERHNS YTCEATHKTS
201 TSPIVKSFNR NEC (SEQ ID NO:117)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-2
LC:
1 CAAATTGTTC TCTCCCAGTC TCCAGCAATC CTGTCTACAT CTCCAGGGGA
51 GAAGGTCACA ATGACTTGCA GGGCCAGCTC AAGTGTATAT TACATGCACT
101 GGTACCAGCA GAAGCCAGGA TCCTCCCCCA AACCCTGGAT TTATGCCACA
151 TCCAACCTGG CTTCTGGAGT CCCTGTTCGC TTCAGTGGCA GTGGGTCTGG
201 GACCTCTTAC TCTCTCACAA TCACCAGAGT GGAGGCTGAA GATGCTGCCA
251 CTTATTACTG CCAGCAGTGG AGTAGTGACC CACTCACGTT CGGTGCTGGG
43

CA 02947080 2016-11-01
301 ACCAAGCTGG AGCTGAAACG GGCTGATGCT GCACCAACTG TATCCATCTT
351 CCCACCATCC AGTGAGCAGT TAACATCTGG AGGTGCCTCA GTCGTGTGCT
401 TCTTGAACAA CTTCTACCCC AAAGACATCA ATGTCAAGTG GAAGATTGAT
451 GGCAGTGAAC GACAAAATGG CGTCCTGAAC AGTTGGACTG ATCAGGACAG
501 CAAAGACAGC ACCTACAGCA TGAGCAGCAC CCTCACGTTG ACCAAGGACG
551 AGTATGAACG ACATAACAGC TATACCTGTG AGGCCACTCA CAAGACATCA
601 ACTTCACCCA TTGTCAAGAG CTTCAACAGG AATGAGTGTT AG (SEQ ID
NO:118)
Amino acid sequence of the Ab-2 LC including signal peptide:
1 MDFQVQIFSF LLISASVIMS RGQIVLSQSP AILSTSPGEK VTMTCRASSS
51 VYYMHWYQQK PGSSPKPWTY ATSNLASGVP VRFSGSGSGT SYSLTITR'VE
101 AEDAATYYCQ QWSSDPLITG AGTKLELKRA DAAPTVSIFP PSSEQLTSGG
151 ASVVCFLNNF YPKDENVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL
201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC (SEQ ID NO:119)
Nucleic acid sequence of the Ab-2 LC including signal peptide encoding
sequence:
1 ATGGATTTTC AAGTGCAGAT TTTCAGCTTC CTGCTAATCA GTGCTTCAGT
51 CATTATGTCC AGGGGACAAA TTGTTCTCTC CCAGTCTCCA GCAATCCTGT
101 CTACATCTCC AGGGGAGAAG GTCACAATGA CTTGCAGGGC CAGCTCAAGT
151 GTATATTACA TGCACTGGTA CCAGCAGAAG CCAGGATCCT CCCCCAAACC
201 CTGGATTTAT GCCACATCCA ACCTGGCTTC TGGAGTCCCT GTTCGCTTCA
251 GTGGCAGTGG GTCTGGGACC TCTTACTCTC TCACAATCAC CAGAGTGGAG
301 GCTGAAGATG CTGCCACTTA TTACTGCCAG CAGTGGAGTA GTGACCCACT
351 CACGTTCGGT GCTGGGACCA AGCTGGAGCT GAAACGGGCT GATGCTGCAC
401 CAACTGTATC CATCTTCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT
451 GCCTCAGTCG TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT
501 CAAGTGGAAG ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT
551 GGACTGATCA GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC
601 ACGTTGACCA AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC
651 CACTCACAAG ACATCAACTT CACCCATTGT CAAGAGCTTC AACAGGAATG
701 AGTGTTAG (SEQ ID NO:120)
Ab-2 Heavy Chain
Amino acid sequence of the mature form (signal peptide removed) of the Ab-2
HC:
1 EVQVQQSGPE LVKPGASVKL SCTASGFNIK DYFTHWVKQR PEQGLEWIGR
51 LDPEDGESDY, APKFQ6KAIM TADTSSNTAY LQLRSLTSED TAIYYCERED
101 YDGTYTFFPY WGQGTLVTVS AAKTTPPSVY PLAPGSAAQT NSMVTLGCLV
151 KGYFPEPVTV TWNSGSLSSG VHTFPAT/LQS DLYTLSSSVT VPSSTWPSET
201 VTCNVAHPAS STKVDKKIVP RDCGCKPCIC TVPEVSSVFI FPPKPKDYLT
251 ITLTPKVTCV VVDISKDDPE VQFSWFVDDV EVHTAQTQPR EEQFNSTFRS
301 VSELPIMHQD WLNGKEFKCR VNSAAFPAPI EKTISKTKGR PKAPQVYTIP
351 PPKEQMAKDK VSLTCMITDF FPEDITVEWQ WNGQPAElVYK NTQPIMDTDG
401 SYFIYSKLNV QKSNWEAGNT FTCSVLHEGL H1VHHTEKSLS HSPGK (SEQ ID
NO:121)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-2 HC:
44

CA 02947080 2016-11-01
1 GAGGTTCAGG TGCAGCAGTC TGGGCCAGAA CTTGTGAAGC CAGGGGCCTC
51 AGTCAAGTTG TCCTGCACAG CTTCTGGCTT CAACATTAAA GACTACTTTA
101 TACACTGGGT GAAGCAGAGG CCTGAACAGG GCCTGGAGTG GATTGGAAGG
151 CTTGATCCTG AGGATGGTGA AAGTGATTAT GCCCCGAAGT TCCAGGACAA
201 GGCCATTATG ACAGCAGACA CATCATCCAA CACAGCCTAT CTTCAGCTCA
251 GAAGCCTGAC ATCTGAGGAC ACTGCCATCT ATTATTGTGA GAGAGAGGAC
301 TACGATGGTA CCTACACCTT =CTTAC TGGGGCCAAG GGACTCTGGT
351 CACTGTCTCT GCAGCCAAAA CGACACCCCC ATCTGTCTAT CCACTGGCCC
401 CTGGATCTGC TGCCCAAACT AACTCCATGG TGACCCTGGG ATGCCTGGTC
451 AAGGGCTATT TCCCTGAGCC AGTGACAGTG ACCTGGAACT CTGGATCCCT
501 GTCCAGCGGT GTGCACACCT TCCCAGCTGT CCTGCAGTCT GACCTCTACA
551 CTCTGAGCAG CTCAGTGACT GTCCCCTCCA GCACCTGGCC CAGCGAGACC
601 GTCACCTGCA ACGTTGCCCA CCCGGCCAGC AGCACCAAGG TGGACAAGAA
651 AATTGTGCCC AGGGATTGTG GTTGTAAGCC TTGCATATGT ACAGTCCCAG
701 AAGTATCATC TGTCTTCATC TTCCCCCCAA AGCCCAAGGA TGTGCTCACC
751 ATTACTCTGA CTCCTAAGGT CACGTGTGTT GTGGTAGACA TCAGCAAGGA
801 TGATCCCGAG GTCCAGTTCA GCTGGTTTGT AGATGATGTG GAGGTGCACA
851 CAGCTCAGAC GCAACCCCGG GAGGAGCAGT TCAACAGCAC TTTCCGCTCA
901 GTCAGTGAAC TTCCCATCAT GCACCAGGAC TGGCTCAATG GCAAGGAGTT
951 CAAATGCAGG GTCAACAGTG CAGCTTTCCC TGCCCCCATC GAGAAAACCA
1001 TCTCCAAAAC CAAAGGCAGA CCGAAGGCTC CACAGGTGTA CACCATTCCA
1051 CCTCCCAAGG AGCAGATGGC CAAGGATAAA GTCAGTCTGA CCTGCATGAT
1101 AACAGACTTC TTCCCTGAAG ACATTACTGT GGAGTGGCAG TGGAATGGGC
1151 AGCCAGCGGA GAACTACAAG AACACTCAGC CCATCATGGA CACAGATGGC
1201 TCTTACTTCA TCTACAGCAA GCTCAATGTG CAGAAGAGCA ACTGGGAGGC
1251 AGGAAATACT TTCACCTGCT CTGTGTTACA TGAGGGCCTG CACAACCACC
1301 ATACTGAGAA GAGCCTCTCC CACTCTCCTG GTAAATGA (SEQ ID NO:122)
Amino acid sequence of the Ab-2 HC including signal peptide:
1 MKCSWVIFFL MAVVTGVNSE VQVQQSGPEL VKPGASVKLS CTASGFNLKD
51 YFIHWVKQRP EQGLEWIGRL DPEDGESDYA PKFQDKAIMT ADTSSNTAYL
101 QLRSLTSEDT AIYYCEREDY DGTYTFFPYW GQGTLVTVSA AK ____ FIPPSVYP
151 LAPGSAAQTN SMVTLGCLVK GYFPEPVTVT WNSGSLSSGV HTFPAVLQSD
201 LYTLSSSVTV PSSTWPSETV TCNVAHPASS TKVDKKIVPR DCGCKPCICT
251 VPEVSSVFIF PPKPKDVLTI TLTPKVTCVV VDISKDDPEV QFSWFVDDVE
301 VHTAQTQPRE EQFNSTFRSV SELPIMHQDW LNGKEFKCRV NSAAFPAPIE
351 KTISKTKGRP KAPQVYTIPP PKEQMAKDKV SLTCMITDFF PEDITVEWQW
401 NGQPAENYKN TQPIMDTDGS YFIYSKLNVQ KSNWEAGNTF TCSVLHEGLH
451 NHHTEKSLSH SPGK (SEQ 1D NO:123)
Nucleic acid sequence of the Ab-2 HC including signal peptide encoding
sequence:
1 ATGAAATGCA GCTGGGTCAT CTTCTTCCTG ATGGCAGTGG TTACAGGGGT
51 CAATTCAGAG GTTCAGGTGC AGCAGTCTGG GCCAGAACTT GTGAAGCCAG
101 GGGCCTCAGT CAAGTTGTCC TGCACAGCTT CTGGCTTCAA CATTAAAGAC
151 TACTTTATAC ACTGGGTGAA GCAGAGGCCT GAACAGGGCC TGGAGTGGAT
201 TGGAAGGCTT GATCCTGAGG ATGGTGAAAG TGATTATGCC CCGAAGTTCC
251 AGGACAAGGC CATTATGACA GCAGACACAT CATCCAACAC AGCCTATCTT
301 CAGCTCAGAA GCCTGACATC TGAGGACACT GCCATCTATT ATTGTGAGAG
351 AGAGGACTAC GATGGTACCT ACACCTTITI TCCTTACTGG GGCCAAGGGA
401 CTCTGGTCAC TGTCTCTGCA GCCAAAACGA CACCCCCATC TGTCTATCCA
451 CTGGCCCCTG GATCTGCTGC CCAAACTAAC TCCATGGTGA CCCTGGGATG

CA 02947080 2016-11-01
501 CCTGGTCAAG GGCTATTTCC CTGAGCCAGT GACAGTGACC TGGAACTCTG
551 GATCCCTGTC CAGCGGTGTG CACACCTTCC CAGCTGTCCT GCAGTCTGAC
601 CTCTACACTC TGAGCAGCTC AGTGACTGTC CCCTCCAGCA CCTGGCCCAG
651 CGAGACCGTC ACCTGCAACG TTGCCCACCC GGCCAGCAGC ACCAAGGTGG
701 ACAAGAAAAT TGTGCCCAGG GATTGTGGTT GTAAGCCTTG CATATGTACA
751 GTCCCAGAAG TATCATCTGT CTTCATCTTC CCCCCAAAGC CCAAGGATGT
801 GCTCACCATT ACTCTGACTC CTAAGGTCAC GTGTGTTGTG GTAGACATCA
851 GCAAGGATGA TCCCGAGGTC CAGTTCAGCT GG __________________________ rri GTAGA
TGATGTGGAG
901 GTGCACACAG CTCAGACGCA ACCCCGGGAG GAGCAGTTCA ACAGCACTTT
951 CCGCTCAGTC AGTGAACTTC CCATCATGCA CCAGGACTGG CTCAATGGCA
1001 AGGAGTTCAA ATGCAGGGTC AACAGTGCAG crn. CCCTGC CCCCATCGAG
1051 AAAACCATCT CCAAAACCAA AGGCAGACCG AAGGCTCCAC AGGTGTACAC
1101 CATTCCACCT CCCAAGGAGC AGATGGCCAA GGATAAAGTC AGTCTGACCT
1151 GCATGATAAC AGACTTCTTC CCTGAAGACA TTACTGTGGA GTGGCAGTGG
1201 AATGGGCAGC CAGCGGAGAA CTACAAGAAC ACTCAGCCCA TCATGGACAC
1251 AGATGGCTCT TACTTCATCT ACAGCAAGCT CAATGTGCAG AAGAGCAACT
1301 GGGAGGCAGG AAATACTTTC ACCTGCTCTG TGTTACATGA GGGCCTGCAC
1351 AACCACCATA CTGAGAAGAG CCTCTCCCAC TCTCCTGGTA AATGA (SEQ ID
NO:124)
Ab-3
The sequences of the Antibody 3 (also referred to herein as Ab-3) LC and HC
are as follows:
Ab-3 Light Chain
Amino acid sequence of the mature form (signal peptide removed) of the Ab-3
LC:
1 EIVLTQSPAL MAASPGEKVT ITCSVSSTI8`,WHEINTFQQK SDTSPKPWIY
51 CrTNLASGVP VRFSGSGSGT SYSLTISSME AEDAATYYCo QWSSYPILTFG
101 AGT-KLELRRA DAAPTVSIFP PSSEQLTSGG ASVVCFLNNF YPKIjINVKWIC
151 IDGSERQNGV LNSWTDQDSK DSTYSMSSTL TLTKDEYERH NSYTCEATHK
201 TSTSPIVKSF NRNEC (SEQ ID NO:125)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-3 LC:
1 GAAATTGTGC TCACCCAGTC TCCAGCACTC ATGGCTGCAT CTCCGGGGGA
51 GAAGGTCACC ATCACCTGCA GTGTCAGTTC AACTATAAGT TCCAACCACT
101 TGCACTGGTT CCAGCAGAAG TCAGACACCT CCCCCAAACC CTGGATTTAT
151 GGCACATCCA ACCTGGCTTC TGGAGTCCCT GTTCGCTTCA GTGGCAGTGG
201 ATCTGGGACC TCTTATTCTC TCACAATCAG CAGCATGGAG GCTGAGGATG
251 CTGCCACTTA TTACTGTCAA CAGTGGAGTA GTTACCCACT CACGTTCGGC
301 GCTGGGACCA AGCTGGAGCT GAGACGGGCT GATGCTGCAC CAACTGTATC
351 CATCTTCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT GCCTCAGTCG
401 TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT CAAGTGGAAG
451 ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT GGACTGATCA
501 GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC ACGTTGACCA
551 AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC CACTCACAAG
601 ACATCAACTT CACCCATTGT CAAGAGCTTC AACAGGAATG AGTGTTAG (SEQ
ID NO:126)
Amino acid sequence of the Ab-3 LC including signal peptide:
46

CA 02947080 2016-11-01
MDFHVOMFIVILTWTVILS SGEIVLTQSP ALMAASPGEK VTITCSVSST
51 ISSNEIHWFQ QKSDTSPKPW IYGTSNLASG VPVRFSGSGS GTSYSLTISS
101 MEAEDAATYY CQQWSSYPLT FGAGTKLELR RADAAPTVSI FPPSSEQLTS
151 GGASVVCFLN NFYPKDINVK WKIDGSERQN GVLNSWTDQD SKDSTYSMSS
201 TLTLTKDEYE RIANSYTCEAT HKTSTSPIVK SFNRNEC (SEQ ID NO:127)
Nucleic acid sequence of the Ab-3 LC including signal peptide encoding
sequence:
1 ATGGAT ____ MC ATGTGCAGAT TTTCAGCTTC ATGCTAATCA GTGTCACAGT
51 CATTTTGTCC AGTGGAGAAA TTGTGCTCAC CCAGTCTCCA GCACTCATGG
101 CTGCATCTCC GGGGGAGAAG GTCACCATCA CCTGCAGTGT CAGTTCAACT
151 ATAAGTTCCA ACCACTTGCA CTGGTTCCAG CAGAAGTCAG ACACCTCCCC
201 CAAACCCTGG ATTTATGGCA CATCCAACCT GGCTTCTGGA GTCCCTGTTC
251 GCTTCAGTGG CAGTGGATCT GGGACCTCTT ATTCTCTCAC AATCAGCAGC
301 ATGGAGGCTG AGGATGCTGC CACTTATTAC TGTCAACAGT GGAGTAGTTA
351 CCCACTCACG TTCGGCGCTG GGACCAAGCT GGAGCTGAGA CGGGCTGATG
401 CTGCACCAAC TGTATCCATC TTCCCACCAT CCAGTGAGCA GTTAACATCT
451 GGAGGTGCCT CAGTCGTGTG CTTCTTGAAC AACTTCTACC CCAAAGACAT
501 CAATGTCAAG TGGAAGATTG ATGGCAGTGA ACGACAAAAT GGCGTCCTGA
551 ACAGTTGGAC TGATCAGGAC AGCAAAGACA GCACCTACAG CATGAGCAGC
601 ACCCTCACGT TGACCAAGGA CGAGTATGAA CGACATAACA GCTATACCTG
651 TGAGGCCACT CACAAGACAT CAACTTCACC CATTGTCAAG AGCTTCAACA
701 GGAATGAGTG TTAG (SEQ ID NO:128)
Ab-3 Heavy Chain
Amino acid sequence of the mature form (signal peptide removed) of the Ab-3
HC:
1 EVQLQQSGAE LVRPGALVKL SCTASDFNIK DFYLOWMRQR PEQGLDWIGR
51 iii_PENGDTLY DPKFQ15KATL TTDTSSNTAY LQLSGLTSET TAVYYCSR.EA-:
101 DYFEDGTSYW YFDVWGAGTT ITVSSAKTTP PSVYPLAPGS AAQTNSMVTL
151 GCLVKGYFPE PVTVTWNSGS LSSGVHTFPA VLQSDLYTLS SSVTVPSSTW
201 PSETVTCNVA HPASSTKVDK KIVPRDCGCK PCICTVPEVS SVFIFPPKPK
251 DVLTITLTPK VTCVVVDISK DDPEVQFSWF VDDVEVHTAQ TQPREEQFNS
301 TFRSVSELPI MHQDWLNGKE FKCRVNSAAF PAPIEKTISK TKGRPKAPQV
351 YTIPPPKEQM AKDKVSLTCM ITDFFPEDIT VEWQWNGQPA ElVYKNTQPIM
401 DTDGSYFIYS KLNVQKS1VWE AGNTFTCSVL HEGLHNHHTE KSLSHSPGK (SEQ
ID NO:129)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-3 HC:
1 GAGGTTCAGC TGCAGCAGTC TGGGGCTGAA CTTGTGAGGC CAGGGGCCTT
51 AGTCAAGTTG TCCTGCACAG CTTCTGACTT CAACATTAAA GACTTCTATC
101 TACACTGGAT GAGGCAGCGG CCTGAACAGG GCCTGGACTG GATTGGAAGG
151 ATTGATCCTG AGAATGGTGA TACTTTATAT GACCCGAAGT TCCAGGACAA
201 GGCCACTCTT ACAACAGACA CATCCTCCAA CACAGCCTAC CTGCAGCTCA
251 GCGGCCTGAC ATCTGAGACC ACTGCCGTCT ATTACTGTTC TAGAGAGGCG
301 GATTATTTCC ACGATGGTAC CTCCTACTGG TACTTCGATG TCTGGGGCGC
351 AGGGACCACA ATCACCGTCT CCTCAGCCAA AACGACACCC CCATCTGTCT
401 ATCCACTGGC CCCTGGATCT GCTGCCCAAA CTAACTCCAT GGTGACCCTG
451 GGATGCCTGG TCAAGGGCTA TTTCCCTGAG CCAGTGACAG TGACCTGGAA
501 CTCTGGATCC CTGTCCAGCG GTGTGCACAC CTTCCCAGCT GTCCTGCAGT
551 CTGACCTCTA CACTCTGAGC AGCTCAGTGA CTGTCCCCTC CAGCACCTGG
47

CA 02947080 2016-11-01
"6"01'c6Add&A"GA "CcGIVACCTG CAACGTTGCC CACCCGGCCA GCAGCACCAA
651 GGTGGACAAG AAAATTGTGC CCAGGGATTG TGGTTGTAAG CCTTGCATAT
701 GTACAGTCCC AGAAGTATCA TCTGTCTTCA TCTTCCCCCC AAAGCCCAAG
751 GATGTGCTCA CCATTACTCT GACTCCTAAG GTCACGTGTG TTGTGGTAGA
801 CATCAGCAAG GATGATCCCG AGGTCCAGTT CAGCTGGTTT GTAGATGATG
851 TGGAGGTGCA CACAGCTCAG ACGCAACCCC GGGAGGAGCA GTTCAACAGC
901 ACTTTCCGCT CAGTCAGTGA ACTTCCCATC ATGCACCAGG ACTGGCTCAA
951 TGGCAAGGAG TTCAAATGCA GGGTCAACAG TGCAGCTTTC CCTGCCCCCA
1001 TCGAGAAAAC CATCTCCAAA ACCAAAGGCA GACCGAAGGC TCCACAGGTG
1051 TACACCATTC CACCTCCCAA GGAGCAGATG GCCAAGGATA AAGTCAGTCT
1101 GACCTGCATG ATAACAGACT TCTTCCCTGA AGACATTACT GTGGAGTGGC
1151 AGTOGAATGG GCAGCCAGCG GAGAACTACA AGAACACTCA GCCCATCATG
1201 GACACAGATG GCTCTTACTT CATCTACAGC AAGCTCAATG TGCAGAAGAG
1251 CAACTGGGAG GCAGGAAATA CTTTCACCTG CTCTGTGTTA CATGAGGGCC
1301 TGCACAACCA CCATACTGAG AAGAGCCTCT CCCACTCTCC TGGTAAATGA
(SEQ ID NO:130)
Amino acid sequence of the Ab-3 HC including signal peptide:
1 MKCSWVIFFL MAVVTGVNSE VQLQQSGAEL VRPGALVKLS CTASDFNIKD
51 FYLHWMRQRP EQGLDWIGRI DPENGDTLYD PKFQDKATLT TDTSSNTAYL
101 QLSGLTSETT AVYYCSREAD YRIDGTSYWY FDVWGAGTTI TVSSAKTTPP
151 SVYPLAPGSA AQTNSMVTLG CLVKGYFPEP VTVT'VVNSGSL SSGVHTFPAV
201 LQSDLYTLSS SVTVPSSTWP SETVTCNVAH PASSTKVDKK IVPRDCGCKP
251 CICTVPEVSS VFIFPPKPKD VLTITLTPKV TCVVVDISKD DPEVQFSWFV
301 DDVEVHTAQT QPREEQFNST FRSVSELPIM HQDWLNGKEF KCRVNSAAFP
351 APIEKTISKT KGRPKAPQVY TIPPPKEQMA KDKVSLTCMI TDFFPEDITV
401 EWQWNGQPAE NYKNTQPIMD TDGSYFIYSK LNVQKSNWEA GNTFTCSVLH
451 EGLBNHE1TEK SLSHSPGK (SEQ ID NO:131)
Nucleic acid sequence of the Ab-3 HC including signal peptide encoding
sequence:
1 ATGAAATGCA GCTGGGTCAT CTTCTTCCTG ATGGCAGTGG TTACAGGGGT
51 CAATTCAGAG GTTCAGCTGC AGCAGTCTGG GGCTGAACTT GTGAGGCCAG
101 GGGCCTTAGT CAAGTTGTCC TGCACAGCTT CTGACTTCAA CATTAAAGAC
151 TTCTATCTAC ACTGGATGAG GCAGCGGCCT GAACAGGGCC TGGACTGGAT
- 35 201 TGGAAGGATT GATCCTGAGA ATGGTGATAC TTTATATGAC CCGAAGTTCC
251 AGGACAAGGC CACTCTTACA ACAGACACAT CCTCCAACAC AGCCTACCTG
301 CAGCTCAGCG GCCTGACATC TGAGACCACT GCCGTCTATT ACTGTTCTAG
351 AGAGGCGGAT TATTTCCACG ATGGTACCTC CTACTGGTAC TTCGATGTCT
401 GGGGCGCAGG GACCACAATC ACCGTCTCCT CAGCCAAAAC GACACCCCCA
451 TCTGTCTATC CACTGGCCCC TGGATCTGCT GCCCAAACTA ACTCCATGGT
501 GACCCTGGGA TGCCTGGTCA AGGGCTAM CCCTGAGCCA GTGACAGTGA
551 CCTGGAACTC TGGATCCCTG TCCAGCGGTG TGCACACCTT CCCAGCTGTC
601 CTGCAGTCTG ACCTCTACAC TCTGAGCAGC TCAGTGACTG TCCCCTCCAG
651 CACCTGGCCC AGCGAGACCG TCACCTGCAA CGTTGCCCAC CCGGCCAGCA
701 GCACCAAGGT GGACAAGAAA ATTGTGCCCA GGGATTGTGG TTGTAAGCCT
751 TGCATATGTA CAGTCCCAGA AGTATCATCT GTCTTCATCT TCCCCCCAAA
801 GCCCAAGGAT GTGCTCACCA TTACTCTGAC TCCTAAGGTC ACGTGTGTTG
851 TGGTAGACAT CAGCAAGGAT GATCCCGAGG TCCAGTTCAG CTGGTTTGTA
901 GATGATGTGG AGGTGCACAC AGCTCAGACG CAACCCCGGG AGGAGCAGTT
951 CAACAGCACT TTCCGCTCAG TCAGTGAACT TCCCATCATG CACCAGGACT
48

CA 02947080 2016-11-01
160f. GaCrAnAltbtAAGGAGTTC AAATGCAGGG TCAACAGTGC AGCTTTCCCT
1051 GCCCCCATCG AGAAAACCAT CTCCAAAACC AAAGGCAGAC CGAAGGCTCC
1101 ACAGGTGTAC ACCATTCCAC CTCCCAAGGA GCAGATGGCC AAGGATAAAG
1151 TCAGTCTGAC CTGCATGATA ACAGACTTCT TCCCTGAAGA CATTACTGTG
1201 GAGTGGCAGT GGAATGGGCA GCCAGCGGAG AACTACAAGA ACACTCAGCC
1251 CATCATGGAC ACAGATGGCT CTTACTTCAT CTACAGCAAG CTCAATGTGC
1301 AGAAGAGCAA CTGGGAGGCA GGAAATACTT TCACCTGCTC TGTGTTACAT
1351 GAGGGCCTGC ACAACCACCA TACTGAGAAG AGCCTCTCCC ACTCTCCTGG
1401 TAAATGA (SEQ ID NO:132)
Ab-4
The sequences of the Antibody 4 (also referred to herein as Ab-4) LC and HC
are as follows:
Ab-4 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-4
LC:
1 DIQMTQITSS LSASLGDRVS ISCRASQDISWLNWYQQKP DGTFKLLIFY
51 1..:SRLIi,SGVPS RFSGSGSGTD YSLTIYNLEQ EDFATYFCQQ GD'FLPYTTGG
101 GTKIEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFL1VNFY PKDI1VVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:133)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-4 LC:
1 GATATCCAGA TGACACAGAT TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC AATTATTTAA
101 ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT TATCTTCTAC
151 ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TATTCTCTCA CCATTTACAA CCTGGAGCAA GAAGATTTTG
251 CCACTTACTT TTGCCAACAG GGAGATACGC TT'CCGTACAC TTTCGGAGGG
301 GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GTTAG (SEQ ID
NO:134)
Amino acid sequence of the Ab-4 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGTRC DIQMTQITSS LSASLGDRVS ISCRASQDIS
51 NYLNWYQQKP DGTFKLLIFY TSRLLSGVPS RFSGSGSGTD YSLTIYNLEQ
101 EDFATYFCQQ GDTLPYTFGG GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:135)
Nucleic acid sequence of the Ab-4 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTTGCTCT GTTTTCAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAT TACATCCTCC CTGTCTGCCT
49

CA 02947080 2016-11-01
101 CfetddadA4CAGGGICTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC
151 AATTATTTAA ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT
201 TATCTTCTAC ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCA'FTTACAA CCTGGAGCAA
301 GAAGATTTTG CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC
351 TTTCGGAGGG GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GTTAG (SEQ ID NO:136)
Ab-4 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-4
HC:
1 EVQLQQSGPE LNIKPGASVKM SCKASGYTET DYNMHWVKQN QGKTLEW10
51 INPNSGG-AGY NQK.FKOKATL TVDKSSTTAY MELRSLTSED SAVYYCARCG
101 YPDIYD:DWYF DV*GAGTTVT VSSAKTTPPS VYPLAPGSAA QTNSMVTLGC
151 IVIµGYFPEPV TVTWNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQ PREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQMAK DKVSLTCMIT DFFPEDITVE WQWNGQPAEN YKNTQPIALDT
401 DGSYFIYSla NVQKS1VWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:137)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-4 HC:
1 GAGGTCCAAC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA TACATTCACT GACTACAACA
101 TGCACTGGGT GAAGCAGAAC CAAGGAAAGA CCCTAGAGTG GATAGGAGAA
151 ATTAATCCTA ACAGTGGTGG TGCTGGCTAC AACCAGAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAC CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGATTGGGC
301 TACGATGATA TCTACGACGA CTGGTACTIC GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTA1T1CCC TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAATT GTGCCCAGGG ATTGTGGTTG TAAGCC'TTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTTTGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
901 CGCTCAGTCA GTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC 11TCCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
=

CA 02947080 2016-11-01
1051 ATTCa&TdiCtAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATACTTTCA CCTGCTCTGT GTTACATGAG GGCCTGCACA
1301 ACCACCATAC TGAGAAGAGC CTCTCCCACT CTCCTGGTAA ATGA (SEQ ID
NO:138)
Amino acid sequence of the Ab-4 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNMHWVKQNQ GKTLEWIGEI NPNSGGAGYN QKFKGKATLT VDKSSTTAYM
101 ELRSLTSEDS AVYYCARLGY DDIYDDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
201 SDLYTLSSSV TVPSSTWPSE TVTCNVABPA SSTKVDKKIV PRDCGCKPCI
251 CTVPEVSSVF IFPPKPKDVL TITLTPKVTC VVVDISKDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPIMHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPKEQMAKD KVSLTCMITD FFPEDITVEW
401 QWNGQPAENY KNTQPIMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLITEG
451 LHNBHTEKSL SHSPGK (SEQ ID NO:139)
Nucleic acid sequence of the Ab-4 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAACTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATATAC ATTCACTGAC
151 TACAACATGC ACTGGGTGAA GCAGAACCAA GGAAAGACCC TAGAGTGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTGC TGGCTACAAC CAGAAGTTCA
251 AGGGCAAGGC CACATTGACT GTAGACAAGT CCTCCACCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATT'GGGCTAC GATGATATCT ACGACGACTG GTACTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
501 GGGATGCCTG GTCAAGGGCT ATTTCCCTGA GCCAGTGACA GTGACCTGGA
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACGTTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATCTTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTTGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTTCAACAG
951 CACTTTCCGC TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GTTCAAATGC AGGGTCAACA GTGCAGCTTT CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACATTAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
1251 GGACACAGAT GGCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT AC in CACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAATG
51

CA 02947080 2016-11-01
1401 A (SEQ NC:Y.1TO)
Ah.-4 was humanized to generate Ab-5.
Additional sequences associated with Ab-4:
Asp Ile Gin Met Thr Gin Ile Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Asp Arg Val Ser Ile Ser Cys Arg Ala Ser Gin Asp Ile Ser Asn Tyr
20 25 30
Leu Asn Trp Tyr Gin Gin Lys Pro Asp Gly Thr Phe Lys Leu Leu Ile
35 40 45
Phe Tyr Thr Ser Arg Leu Leu Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Tyr Asn Leu Glu Gin
65 70 75 80
Glu Asp Phe Ala Thr Tyr Phe Cys Gin Gin Gly Asp Thr Leu Pro Tyr
85 90 95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys (SEQ ID NO: 332)
100 105
Ab-5
The sequences of the And-body 5 (also referred to herein as Ab-5) LC and HC
are as follows: =
Ab-5 Lizht Chain:
Amino acid, sequence of the mature form (signal peptide removed) of the Ab-5
LC:
1 DIQNITQSPSS LSASVGDRVT ITOP QtSNYLWYQQKP OK_.A.PKLLIYY
51 rI-Stii,4GVPS RFSGSGSGTD FTLTISSLQ.P t.:DFAIYYCLQ.. GDTLRYfTGG
101 aTICVELKRTV AAPSVFIFTP SDEOLKSGTA SVYCLLIY1TYPILE-A7CV¨ OPPET/
151 DNALOSGNSO ESVTEODSED STYSLSSTLT LSKADYEEIIK VYACEYTHOG
201 LSSPVTICSTN RGEC (SEQ ID NO:141)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-5 LC: .
CTACATCCAGA TGACCCAGTC TCCATCCTCC CTCTCCGCAT CCGTAGGCGA
51CCGCGTAACC ATAACATGTA GAGCA_TCTCA AGATAITI. CC A.A.CTAITIGA
101 ATTGGTACCA ACAAAAACCC GGCAAA.GCAC CTAAACTCCT CATUACTAT
151 ACATC.AAGA.0 TCCTCTCCGG CGTTCCATCA CGATTCTCAG GCTCCGGCTC
= 201 CGGCACAGAT TTCACACTCA. CTA iTICCTC CCTCCA.A.CCA GAAGArrn G
251 CAACCTATTA CTGTCAACAA GGCGATACAC TCCCATACAC ATTCGGCGGC -
. 301 GGCACAAAAG TTGAAAI __ IAA ..A.CGTACGGTG GCTGCACCAT CTGTCTTCAT
=
. 351 CTTCCCGCCA TCTGATGAGC A.GTrG-..AAATC TGGAACTGCC TCTGTTGTGT
= -
401 GCCTCTCTGAA TAACTTCTA.T CCCAGAGAGG.CCAAA.GTACA GTOCAAGGTG. I .
- 451. GATAACGCCC TCCAATCGG.G TAACTCCCAG GAGAGTGTCA CAGAGCAGGA =
== 501 CAGCA.AGG.A.0 AGCACCTACA GCCTCAGCAG CACCCTGACG CTGAGC.4__AAG
.551 CAGACTACGA GAAACACAAA GTCTACC-CCT GCGAAGTCAC CCATCAGGGC
. = =
601 CTGAGCTCGC CCGTCACAAA GAGCTTCA_A_C AGGGGAGAGT GT (SEQ ID
NO:142) =
.5?

CA 02947080 2016-11-01
Amino acid sequence of the Ab-5 LC including signal peptide:
1 MDMRVPAQLL GLLLLWLRGA RCDIQMTQSP SSL,SASVGDR VTITCRASQD
51 ISNYLNWYQQ KPGKAPKLLI MSRLISGV PSRFSGSGSG TDF1.1_,TISSL
101 QPEDFATYYC QQGDTLPYTF GGGIIKVEECR TVA_APSVFIF PPSDEQLKSO
151 TASVVCLLNN FYPREAKVQW KVDN.ALQSGN SQESVTEQDS KDSTYSLSST
201 LTLSKADYEKI-EKVYACEVIE QGLSS-PVTKS FNRGEC (SEQ M NO:143)
Nucleic acid sequence of the Ab-5 LC including sip.al peptide encoding
sequence:
1 ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTGC TACTCTGGCT
51 CCGAGGTGCC AGATGTGACA TCCAGATGAC CLAGICTCCA TCCTCCCTCT
101 CCGCATCCGT AGGCGACCGC GTAACCATAA CATGTAGAGC ATCTCAAGAT
151 ATTTCCAACT A Fn. GAATTG GTACCAACAA AAACCCGGCA AAGCACCTAA ,
201 ALatCTCATT TACTATA.CAT CAAGACTCCT CTCCGGCGTT CCATCACGAT
251 TCTCAGGCTC CGGCTCCGGC ACAGAl-ri CA CACTCACTAT TTCCTCCCTC
301 CAACCAGAAG Al 1-1-1 GCAAC CTATTACTGT CAACAA.GGCG ATACACTCCC
351 ATACACATTC GGCGGCGGCA CAA_AA.OTTGA AATTAAACGT ACGGTGGCTG
401 CACCATCTGT CTTCATC'ITC CCGCCATCTG ATGAGCAGTT GA_AATCTGGA
451 ACTGCCTCTG TTGTGTGCCT GCTGAATAAC TTCTATCCCA GAG.AGGCCAA
52a

CA 02947080 2016-11-01
501 AdtACOTbd'AGGTGOATA ACGCCCTCCA ATCGGGTAAC TCCCAGGAGA
551 GTGTCACAGA GCAGGACAGC AAGGACAGCA CCTACAGCCT CAGCAGCACC
601 CTGACGCTGA GCA_AAGCAGA CTACGAGAAA CACAAAGTCT ACGCCTGCGA
651 AGTCACCCAT CAGGGCCTGA GCTCGCCCGT CACAAAGAGC TTCAACAGGG
701 GAGAGTGT (SEQ ID NO:144)
Ab-5 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-5
HC:
1 EVQLVQSGAE VKKPGASVKV SCKASGYTFT ONMHW'VRQA PGQGLEWMGE.
51 INPNSGGAGY NQKFKGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARLG
101 YDDIYDDWYF DVWGQGTTVT VSSASTKGPS VFPLAPCSRS TSESTAALGC
151 LVKDYFPEPV TVSWNSGALT SGVHTFPAVL QSSGLYSLSS VVTVPSSNFG
201 TQTYTCNVDH KPSNTKVDKT VERKCCVECP PCPAPPVAGP SVFLFPPKPK
251 DTLMISRTPE VTCVVVDVSH EDPEVQFIVWY VDGVEVHNAK TKPREEQFNS
301 TFRVVSVLTV VHQDWLNGKE YKCKVSNKGL PAPIEKTISK TKGQPREPQV
351 YTLPPSREEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE IVNYKTTPPML
401 DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK (SEQ
ID NO:145)
Amino acid sequence of the mature form (signal peptide removed) of the Ab-5 HC
without
carboxy-terminal lysine:
1 EVQLVQSGAE VKKPGASVKV SCKASGYTFT DYN-MIIWVRQA PGQGLEWMGg
51 INPNSGGAGYi`NOKFKGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARO
101 ;YDDIYDDwY2F-DyWdQGTTVT VSSASTKGPS VFPLAPCSRS TSESTAALGC
151 LVKDYFPEPV TVSWNSGALT SGVHTFPAVL QSSGLYSLSS VVTVPSSNFG
201 TQTYTCNVDH KPSNTKVDKT VERKCCVECP PCPAPPVAGP SVFLFPPKPK
251 DTLMISRTPE VTCVVVDVSH EDPEVQFIVWY VDGVEVHNAK TKPREEQFNS
301 TFRVVSVLTV VHQDWLNGKE YKCKVSNKGL PAPIEKTISK TKGQPREPQV
351 YTLPPSREEM IKNQVSLTCL VKGFYPSDL4 VEWESNGQPE NNYKTTPPML
401 DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPG (SEQ
ID NO:392)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-5 HC:
1 GAGGTGCAGC TGGTGCAGAG CGGCGCCGAG GTAAAAAAAC CAGGAGCAAG
51 CGTTAAAGTT TCTTGTAAAG CAAGCGGATA TACATTTACA GATTACAACA
101 TGCATTGGGT AAGACAAGCG CCAGGACAAG GATTGGAATG GATGGGCGAA
151 ATTAACCCTA ATAGTGGAGG AGCAGGCTAC AATCAAAAAT TCAAAGGGAG
201 AGTTACAATG ACAACAGACA CAAGCACTTC AACAGCATAT ATGGAACTGC
251 GATCACTTAG AAGCGACGAT ACAGCTGTAT ACTATTGCGC ACGACTTGGG
301 TATGATGATA TATATGATGA CTGGTATTTC GATGTTTGGG GCCAGGGAAC
351 AACAGTIACC GTCTCTAGTG CCTCCACCAA GGGCCCATCG GTCTTCCCCC
401 TGGCGCCCTG CTCCAGGAGC ACCTCCGAGA GCACAGCGGC CCTGGGCTGC
451 CTGGTCAAGG ACTACTTCCC CGAACCGGTG ACGGTGTCGT GGAACTCAGG
501 CGCTCTGACC AGCGGCGTGC ACACCTTCCC AGCTGTCCTA CAGTCCTCAG
551 GACTCTACTC CCTCAGCAGC GTGGTGACCG TGCCCTCCAG CAACTTCGGC
601 ACCCAGACCT ACACCTGCAA CGTAGATCAC AAGCCCAGCA ACACCAAGGT
651 GGACAAGACA GTTGAGCGCA AATGTTGTOT CGAGTGCCCA CCGTGCCCAG
701 CACCACCTGT GGCAGGACCG TCAGTCTTCC TCTTCCCCCC AAAACCCAAG
53

CA 02947080 2016-11-01
751 QAtACteitA MATCTCCCG GACCCCTGAG GTCACGTGCG TGGTGGTGGA
801 CGTGAGCCAC GAAGACCCCG AGGTCCAGTT CAACTGGTAC GTGGACGGCG
851 TGGAGGTGCA TAATGCCAAG ACAAAGCCAC GGGAGGAGCA GTTCAACAGC
901 ACGTTCCGTG TGGTCAGCGT CCTCACCGTT GTGCACCAGG ACTGGCTGAA
951 CGGCAAGGAG TACAAGTGCA AGGTCTCCAA CAAAGGCCTC CCAGCCCCCA
1001 TCGAGAAAAC CATCTCCAAA ACCAAAGGGC AGCCCCGAGA ACCACAGGTG
1051 TACACCCTGC CCCCATCCCG GGAGGAGATG ACCAAGAACC AGGTCAGCCT
1101 GACCTGCCTG GTCAAAGGCT TCTACCCCAG CGACATCGCC GTGGAGTGGG
1151 AGAGCAATGG GCAGCCGGAG AACAACTACA AGACCACACC TCCCATGCTG
1201 GACTCCGACG GCTCCTTCTT CCTCTACAGC AAGCTCACCG TGGACAAGAG
1251 CAGGTGGCAG CAGGGGAACG TCTTCTCATG CTCCGTGATG CATGAGGCTC
1301 TGCACAACCA CTACACGCAG AAGAGCCTCT CCCTGTCTCC GGGTAAA (SEQ
ID NO:146)
Amino acid sequence of the Ab-5 HC including signal peptide:
1 MDWTWRILFL VAAATGAHSE VQLVQSGAEV KKPGASVKVS CKASGYTFTD
51 YNMHWVRQAP GQGLEWMGEI NPNSGGAGYN QKFKGRVTMT TDTSTSTAYM
101 ELRSLRSDDT AVYYCARLGY DDIYDDWYFD VWGQGTTVTV SSASTKGPSV
151 FPLAPCSRST SESTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ
201 SSGLYSLSSV VTVPSSNFGT QTYTCNVDI1K PSNTKVDKTV ERKCCVECPP
251 CPAPPVAGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVQFNWYV
301 DGVEVBNAKT KPREEQFNST FRVVSVLTVV HQDWLNGKEY KCKVSNKGLP
351 APIEKTISKT KGQPREPQVY TLPPSREEMT KNQVSLTCLV KGFYPSDIAV
401 EWESNGQPEN NYKTTPPMLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH
451 EALHNHYTQK SLSLSPGK (SEQ ID NO:147)
Nucleic acid sequence of the Ab-5 HC including signal peptide encoding
sequence:
1 ATGGACTGGA CCTGGAGGAT CCTCTTCTTG GTGGCAGCAG CCACAGGAGC
51 CCACTCCGAG GTGCAGCTGG TGCAGAGCGG COCCGAGGTA AAAAAACCAG
_________________________________________________ 101 GAGCAAGCGT TAAAGTTTCT
TGTAAAGCAA GCGGATATAC A in ACAGAT
151 TACAACATGC ATTGGGTAAG ACAAGCGCCA GGACAAGOAT TGGAATGGAT
201 GGGCGAAATT AACCCTAATA GTGGAGGAGC AGGCTACAAT CAAAAATTCA
251 AAGGGAGAGT TACAATGACA ACAGACACAA GCACTTCAAC AGCATATATG
301 GAACTGCGAT CACTTAGAAG CGACGATACA QCTGTATACT ATTGCGCACG
351 ACTTGGGTAT GATGATATAT ATGATGACTG GTATTTCGAT GTTTGGGGCC
401 AGGGAACAAC AGTTACCGTC TCTAGTGCCT CCACCAAGGG CCCATCGGTC
451 TTCCCCCTGG CGCCCTGCTC CAGGAGCACC TCCGAGAGCA CAGCGGCCCT
501 GGGCTGCCTG GTCAAGGACT ACTTCCCCGA ACCGGTGACG GTGTCGTGGA
551 ACTCAGGCGC TCTGACCAGC GGCGTGCACA CCTTCCCAGC TGTCCTACAG
601 TCCTCAGGAC TCTACTCCCT CAGCAGCGTG GTGACCGTGC CCTCCAGCAA
651 CTTCGGCACC CAGACCTACA CCTGCAACGT AGATCACAAG CCCAGCAACA
701 CCAAGGTGGA CAAGACAGTT GAGCGCAAAT GTTGTGTCGA GTGCCCACCG
751 TGCCCAGCAC CACCTGTGGC AGGACCGTCA GTCTTCCTCT TCCCCCCAAA
801 ACCCAAGGAC ACCCTCATGA TCTCCCGGAC CCCTGAGGTC ACGTGCGTGG
851 TGGTGGACGT GAGCCACGAA GACCCCGAGG TCCAGTTCAA CTGGTACGTO
901 GACGGCGTGG AGGTGCATAA TGCCAAGACA AAGCCACGGO AGGAGCAGTT
951 CAACAGCACG TTCCGTGTGG TCAGCGTCCT CACCGTTGTG CACCAGGACT
1001 GGCTGAACGG CAAGGAGTAC AAGTGCAAGG TCTCCAACAA AGGCCTCCCA
1051 GCCCCCATCG AGAAAACCAT CTCCAAAACC AAAGGGCAGC CCCGAGAACC
54

CA 02947080 2016-11-01
.110 FACAGGT6TAE ACCCTGCCCC CATCCCGGGA GGAGATGACC AAGAACCAGG
1151 TCAGCCTGAC CTGCCTGGTC AAAGGCTTCT ACCCCAGCGA CATCGCCGTG
1201 GAGTGGGAGA GCAATGGGCA GCCGGAGAAC AACTACAAGA CCACACCTCC
1251 CATGCTGGAC TCCGACGGCT CCTTCTTCCT CTACAGCAAG CTCACCGTGG
1301 ACAAGAGCAG GTGGCAGCAG GGGAACGTCT TCTCATGCTC CGTGATGCAT
1351 GAGGCTCTGC ACAACCACTA CACGCAGAAG AGCCTCTCCC TGTCTCCGGG
1401 TAAA (SEQ ID NO:148)
Ab-5 Variable domains:
Ab-5 light chain variable domain amino acid sequence (without signal
sequence):
1 DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY
51 TSRLLSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ GDTLPYTFGG
101 GTKVEIK (SEQ ID NO:376)
Ab-5 light chain variable domain DNA sequence (without signal sequence):
1 GACATCCAGA TGACCCAGTC TCCATCCTCC CTCTCCGCAT CCGTAGGCGA
51 CCGCGTAACC ATAACATGTA GAGCATCTCA AGATATTTCC AACTA _____________ ITI GA
101 ATTGGTACCA ACAAAAACCC GGCAAAGCAC CTAAACTCCT CAMACTAT
151 ACATCAAGAC TCCTCTCCGG CGTTCCATCA CGATTCTCAG GCTCCGGCTC
201 CGGCACAGAT TTCACACTCA CTA _____ Fri CCTC CCTCCAACCA GAAGAT ___ Fri G
251 CAACCTATTA CTGTCAACAA GGCGATACAC TCCCATACAC ATTCGGCGGC
301 GGCACAAAAG TTGAAATTAA A (SEQ ID NO:377)
Ab-5 heavy chain variable domain amino acid sequence (without signal
sequence):
1 EVQLVQSGAE VKKPGASVKV SCKASGYTFT DYNMI1WVRQA PGQGLEWMGP
51 INPNSGGAGY NQKFKdRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARLP
101 iYDDIYDDWYF_ PVWGQGTTVT VSS (SEQ ID NO:378)
Ab-5 heavy chain variable domain DNA sequence (without signal sequence):
1 GAGGTGCAGC TGGTGCAGAG CGGCGCCGAG GTAAAAAAAC CAGGAGCAAG
51 CGTTAAAGTT TCTTGTAAAG CAAGCGGATA TACATTTACA GATTACAACA
101 TGCATTGGGT AAGACAAGCG CCAGGACAAG GATTGGAATG GATGGGCGAA
151 ATTAACCCTA ATAGTGGAGG AGCAGGCTAC AATCAAAAAT TCAAAGGGAG
201 AGTTACAATG ACAACAGACA CAAGCACTTC AACAGCATAT ATGGAACTGC
251 GATCACTTAG AAGCGACGAT ACAGCTGTAT ACTATTGCGC ACGACTTGGG
301 TATGATGATA TATATGATGA CTGGTATFIC GATGITI _____ GGG GCCAGGGAAC
351 AACAGTTACC GTCTCTAGT (SEQ ID NO:379)
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-5 are as follows:

CA 02947080 2016-11-01
CDR-H1: DYNMHISEQ ID NO:245)
CDR-H2: EINPNSGGAGYNQKFKG (SEQ ID NO:246)
CDR-H3: LGYDDIYDDWYFDV (SEQ ID NO:247)
The light chain variable region CDR sequences of Ab-5 are:
CDR-L1: RASQDISNYLN (SEQ ID NO:78)
CDR-L2: YTSRLLS (SEQ ID NO:79)
CDR-L3: QQGDTLPYT (SEQ ID NO:80)
Ab-6
The sequences of the Antibody 6 (also referred to herein as Ab-6) LC and HC
are as follows:
Ab-6 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-6
LC:
1 DIQMTQTTSS LSASLGDRVT 'SCR/6401$ NYLNWFQ9KP DGTLKLLIFY
51 ITSRLHSpVPS RFSGSGSGTD YSLTISNLEQ EDIATYFCQQ6DTLPYTFGG
101 GTid,EIRRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PKDINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:149)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-6 LC:
1 GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGAGTCACC ATCAGTTGCA GGGCAAGTCA GGACATTAGC AATTATTTAA
101 ACTGGITI CA GCAGAAACCA GATGGAACTC TTAAACTCCT GATCTTCTAC
151 ACATCAAGAT TACACTCAGG AGTTCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TATTCTCTCA CCATTAGCAA CCTGGAGCAA GAAGATATTG
251 CCACTTACTT TTGCCAACAG GGTGATACGC TTCCGTACAC GTTCGGGGGG
301 GGGACCAAGC TGGAAATAAG ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GTTAG (SEQ ID
NO:150)
Amino acid sequence of the Ab-6 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGTRC DIQMTQTTSS LSASLGDRVT ISCRASQDIS
51 NYLNWFQQKP DGTLKLLIFY TSRLHSGVPS RFSGSGSGTD YSLTISNLEQ
101 EDIATYFCQQ GDTLPYTFGG GTKLEIRRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:151)
56
=

CA 02947080 2016-11-01
"NiTeld'intid" Vtitiehde. cif the Ab-6 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTTGCTCT GTTTTCAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGAGTCACC ATCAGTTGCA GGGCAAGTCA GGACATTAGC
151 AATTATTTAA ACTGG IT1'CA GCAGAAACCA GATGGAACTC TTAAACTCCT
201 GATCTTCTAC ACATCAAGAT TACACTCAGG AGTTCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCATTAGCAA CCTGGAGCAA
301 GAAGATATTG CCACTTACTT TTGCCAACAG GGTGATACGC TTCCGTACAC
351 GTTCGGGGGG GGGACCAAGC TGGAAATAAG ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTIVCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAMTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GTTAG (SEQ ID NO:152)
Ab-6 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-6
HC:
1 EVQLQQSGPE LMKPGASVKM SCKASGYTFT DyNWWVKQN QGKSLEWIGE
51 INPNSGGSGY NQKFICGKATL TVDKSSSTAY MELRSLTSED SAVYYCARLV
101 YpGSYEDWyF pVWGAGTTVT VSSAKTTPPS VYPLAPGSAA QTNSMVTLGC
151 LVKGYFPEPV TVTWNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQ PREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQMAK DKVSLTCMIT DFFPEDITVE WQW1VGQPAEN YKNTQPIMDT
401 DGSYF1YSKL NVQKSNWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:153)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-6 HC:
1 GAGGTCCAGC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA CACATTCACT GACTACAACA
101 TGCACTGGGT GAAACAGAAC CAAGGAAAGA GCCTAGAGTG GATAGGAGAA
151 ATTAATCCTA ACAGTGGTGG TAGTGGCTAC AACCAAAAGT TCAAAGGCAA
201 GGCCACATTG ACTGTAGACA AGTCTTCCAG CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGATTGGTC
301 TACGATGGCA GCTACGAGGA CTGGTACTTC GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTATTTCCC TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAATT GTGCCCAGGG ATTGTGGITG TAAGCCTTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTTTGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
57

CA 02947080 2016-11-01
19dYtiblefdAtadTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC 17-1 CCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
1051 ATI'CCACCTC CCAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATACTTTCA CCTGCTCTGT GTTACATGAG GGCCTGCACA
1301 ACCACCATAC TGAGAAGAGC CTCTCCCACT CTCCTGGTAA ATGA (SEQ ID
NO:154)
Amino acid sequence of the Ab-6 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNME1WVKQNQ GKSLEWIGEI NPNSGGSGYN QKFKGKATLT VDKSSSTAYM
101 ELRSLTSEDS AVYYCARLVY DGSYEDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
201 SDLYTLSSSV TVPSSTWPSE TVTCNVAHPA SSTKVDKKIV PRDCGCKPCI
251 CTVPEVSSVF IFPFKPKDVL TITLTPKVTC VVVDISKDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPIMHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPKEQMAKD KVSLTCM1TD FFPEDITVEW
401 QWNGQPAENY KNTQPIMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLHEG
451 LHNE1HTEKSL SHSPGK (SEQ ID NO:155)
Nucleic acid sequence of the Ab-6 HC including signal peptide encoding
sequence:
I ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAGCTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATACAC ATTCACTGAC
151 TACAACATGC ACTGGGTGAA ACAGAACCAA GGAAAGAGCC TAGAGTGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTAG TGGCTACAAC CAAAAGTTCA
251 AAGGCAAGGC CACATT'GACT GTAGACAAGT CTTCCAGCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATTGGTCTAC GATGGCAGCT ACGAGGACTG GTACTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
__________________________ 501 GGGATGCCTG GTCAAGGGCT A 1T1CCCTGA GCCAGTGACA
GTGACCTGGA
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACG'TTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATCTTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTrGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTTCAACAG
951 CAC ___ MCCGC TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GTTCAAATGC AGGGTCAACA GTGCAGCTTT CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACATTAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
58

CA 02947080 2016-11-01
-12.5YOUACAtAbATII3GCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT ACTTTCACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAATG
1401 A (SEQ ID NO:156)
Ab-7
The sequences of the Antibody 7 (also referred to herein as Ab-7) LC and HC
are as follows:
Ab-7 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-7
LC:
1 DIQMTQTTSS LSASLGDRVT ICCkASQVIT NYLYWYQQKP DGTFKLLIYY,
51 TSRLHSGVPS RFSGSGSGTD YSLTI-SNLEQ EDIATYFCQQ GDTLPYTFGo
101 GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PKDINVICWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:157)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-7 LC:
1 GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGAGTCACC ATCTGTTGCA GGGCAAGTCA GGTCATTACC AATTATTTAT
101 ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT GATCTACTAC
151 ACATCAAGAT TACACTCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TA'TTCTCTCA CCA'TTAGCAA CCTGGAACAG GAAGATATTG
251 CCACTTACTT TTGCCAACAG GGTGATACGC TTCCGTACAC GTTCGGAGGG
301 GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GT (SEQ ID
NO:158)
Amino acid sequence of the Ab-7 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGTRC DIQMTQTTSS LSASLGDRVT ICCRASQVIT
51 NYLYWYQQKP DGTFKLLIYY TSRLHSGVPS RFSGSGSGTD YSLTISNLEQ
101 EDIATYFCQQ GDTLPYTFGG GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATIIKT STSPIVKSFN RNEC (SEQ ID NO:159)
Nucleic acid sequence of the Ab-7 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTT'GCTCT GTITICAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGAGTCACC ATCTGTTGCA GGGCAAGTCA GGTCATTACC
151 AATTA ITI __ AT ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT
201 GATCTACTAC ACATCAAGAT TACACTCAGG AGTCCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCATTAGCAA CCTGGAACAG
301 GAAGATATTG CCACTTACTT TTGCCAACAG GGTGATA.CGC TTCCGTACAC
59

CA 02947080 2016-11-01
3'51'aPTCOGAGMOGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TT'GACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GT (SEQ ID NO:160)
Ab-7 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-7
HC:
1 EVQLQQSGPE LMKPGASVKM SCKASGYTFT p\rlIMIINMKQN QGKSLEWIGE
51 INPNSGGAGY NQQFKOKATL TVDKSSRTAY MELRSLTSED SAVYYCARLd
101 YVGNYEDWYF DVWGAGTTVT VSSAKTTPPS VYPLAPGSAA QTNSMVTLGC
151 LVKGYFPEPV TVTWNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQ PREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQMAK DKVSLTCMIT DFFPEDITVE WQWNGQPAEN YK1VTQPIMDT
401 DGSYFIYSKL NVQKSNWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:161)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-7 HC:
1 GAGGTCCAGC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG C'TTCTGGATA CACATTCACT GACTACAACA
101 TGCACTGGAT GAAGCAGAAC CAAGGAAAGA GCCTAGAATG GATAGGAGAA
151 ATTAATCCTA ACAGTGGTGG TGCTGGCTAC AACCAGCAGT TCAAAGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAG GACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT A'TTACTGTGC AAGATT'GGGC
301 TACGTTGGTA ATTACGAGGA CTGGTACTTC GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTATTTCCC TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAA'TT GTGCCCAGGG ATTGTGGTTG TAAGCCTTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTTTGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
901 CGCTCAGTCA GTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC TTTCCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
1051 ATTCCACCTC CCAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATAC ____ MCA CCTGCTCTGT GTTACATGAG GGCCTGCACA

CA 02947080 2016-11-01
our ACCACCATACIITGAGAAGAGC CTCTCCCACT CTCCTGGTAA A (SEQ ID
NO:162)
Amino acid sequence of the Ab-7 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNMHWMKQNQ GKSLEWIGEI NPNSGGAGYN QQFKGKATLT VDKSSRTAYM
101 ELRSLTSEDS AVYYCARLGY VGNYEDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
201 SDLYTLSSSV TVPSSTWPSE TVTCNVAHPA SSTKVDKKIV PRDCGCKPCI
251 CTVPEVSSVF IFPPKPKDVL TITLTPKVTC VVVDISKDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPINTHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPKEQMAKD KVSLTCMITD FFPEDITVEW
401 QWNGQPAENY KNTQPIMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLHEG
451 LHNHHTEKSL SHSPGK (SEQ ID NO:163)
Nucleic acid sequence of the Ab-7 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAGCTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATACAC ATTCACTGAC
151 TACAACATGC ACTGGATGAA GCAGAACCAA GGAAAGAGCC TAGAATGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTGC TGGCTACAAC CAGCAGTTCA
251 AAGGCAAGGC CACATTGACT GTAGACAAGT CCTCCAGGAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATTGGGCTAC GTTGGTAATT ACGAGGACTG GTACTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
501 GGGATGCCTG GTCAAGGGCT A ________________________________________ IT1
CCCTGA GCCAGTGACA GTGACCTGGA
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACG'TTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATCTTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTTGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTTCAACAG
951 CAC ____________________________________________________________ IT! CCGC
TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GITCAAATGC AGGGTCAACA GTGCAGCI-11 CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACATTAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
1251 GGACACAGAT GGCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT ACTTTCACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAA
(SEQ ID NO:164)
Ab-8
The sequences of the Antibody 8 (also referred to herein as Ab-8) LC and HC
are as follows:
61

CA 02947080 2016-11-01
Ab-8 Light Uhain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-8
LC:
1 DIQMTQTTSS LSASLGDRVS ISCRASQDIS NYLSWYQQKP DGTFKLLIFY
51 TSRLLS,GVPS RFSGSGSGTD YSLTIYNLEQ EDFATYFCQQ GDTLPYTFGG
101 GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLIVNFY PKDINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:165)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-8 LC:
1 GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC AATTA _____________ ITI AA
101 ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT TATCTTCTAC
151 ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TATTCTCTCA CCATTTACAA CCTGGAGCAA GAAGATITI G
251 CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC TTTCGGAGGG
301 GGGACCAAAC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTIVCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCT'TCAAC AGGAATGAGT GITAG (SEQ ID
NO:166)
Amino acid sequence of the Ab-8 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGTRC DIQMTQTTSS LSASLGDRVS ISCRASQDIS
51 NYLNWYQQKP DGTFKLLIFY TSRLLSGVPS RFSGSGSGTD YSLTIYNLEQ
101 EDFATYFCQQ GDTLPYTFGG GTKLEIICRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDLNVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:167)
Nucleic acid sequence of the Ab-8 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTTGCTCT GITFI _____ CAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGGGTCTCC ATCAG'TT'GCA GGGCAAGTCA AGACAT'TAGC
151 AATTATTTAA ACTGGTATCA GCAGAAACCA GATGGAACT1"ITAAACTCCT
201 TATCTTCTAC ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCA'TTTACAA CCTGGAGCAA
301 GAAGATITI ____________________________________________________ G
CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC
351 TTTCGGAGGG GGGACCAAAC TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GTTAG (SEQ ID NO:168)
62

CA 02947080 2016-11-01
Ab-8 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-8
HC:
1 EVQLQQSGPE LMKPGASVICM SCKASGYTFT DYNNIRWVKQN QGKTLDWIGE
51 INPNSGGA.GY NQKFKGICATL TVDKS,STTAY MELRSLTSED SAVYYCARLO
101 yDDIYDDWYF DVNGAGTTVT VSSAKTTPPS VYPLAPGSAA QTIVSMVTL-GC
151 LVKGYFPEPV TVTWNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQPREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQII1AK DKVSLTCMIT DFFPEDITVE WQWNGQPAEN YKNTQPIMDT
401 DGSYFIYSKL NVQKSNWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:169)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-8 HC:
1 GAGGTCCAAC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA TACAT'TCACT GACTACAACA
101 TGCACTGGGT GAAGCAGAAC CAAGGAAAGA CCCTAGACTG GATAGGAGAA
151 ATTAATCCTA ACAGTGGTGG TGCTGGCTAC AACCAGAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAC CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGATTGGGC
301 TACGATGATA TCTACGACGA CTGGTACTTC GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTATT'TCCC TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAATT GTGCCCAGGG ATTGTGGTI'G TAAGCCTTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTTTGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
901 CGCTCAGTCA GTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC TTTCCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
1051 ATTCCACCTC CCAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATACTTTCA CCTGCTCTGT GTTACATGAG GGCCTGCACA
1301 ACCACCATAC TGAGAAGAGC CTCTCCCACT CTCCTGGTAA ATGA (SEQ ID
NO:170)
Amino acid sequence of the Ab-8 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNMHWVKQNQ GKTLDWIGEI NPNSGGAGYN QKFKGKATLT VDKSSTTAYM
101 ELRSLTSEDS AVYYCARLGY DDIYDDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
63

CA 02947080 2016-11-01
u60
01'SDLYTLSSSV TVPSSTWPSE TVTCNVAIPA SSTKVDICKIV PRDCGCKPCI
251 CTVPEVSSVF IFPPKPKDVL TITLTPKVTC VVVDISICDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPIMHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPICEQMAKD KVSLTCMITD FFPEDITVEW
401 QWNGQPAENY KNTQPIMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLHEG
451 LHNHHTEKSL SHSPGK (SEQ ID NO:171)
Nucleic acid sequence of the Ab-8 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTC'TTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAACTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATATAC ATTCACTGAC
151 TACAACATGC ACTGGGTGAA GCAGAACCAA GGAAAGACCC TAGACTGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTGC TGGCTACAAC CAGAAGTTCA
251 AGGGCAAGGC CACA'FTGACT GTAGACAAGT CCTCCACCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATTGGGCTAC GATGATATCT ACGACGACTG GTACTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
501 GGGATGCCTG GTCAAGGGCT A _____ In CCCTGA GCCAGTGACA GTGACCTGGA
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACGTTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATCTTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTTGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTTCAACAG
951 CACT1TCCGC TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GTTCAAATGC AGGGTCAACA GTGCAGCTTT CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACATTAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
1251 GGACACAGAT GGCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT ACTTTCACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAATG
1401 A (SEQ ID NO:172)
Ab-9
The sequences of the Antibody 9 (also referred to herein as Ab-9) LC and HC
are as follows:
Ab-9 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-9
LC:
1 DIQMTQITSS LSASLGDRVS ISCWODIS NYLNWYQQKP DGTFKLLIFY
51 TSRLFSGVPS RFSGSGSGTD YSLTIYNLEQ EDFATYFCQQ GDTLPYTFGG
101 GTKVEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFL1VNFY PKDINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:173)
64

CA 02947080 2016-11-01
'Nucleic acia sequence encoding the mature form (signal peptide removed) of
the Ab-9 LC:
1 GATATCCAGA TGACACAGAT TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC AATTA TITAA
101 ATTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT TATCTTCTAC
151 ACATCAAGAT TATMCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TATTCTCTCA CCAITIACAA CCTGGAGCAA GAAGAMTG
251 CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC TTTCGGAGGG
301 GGGACCAAGG TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GT (SEQ ID
NO:174)
Amino acid sequence of the Ab-9 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGTRC DIQMTQITSS LSASLGDRVS ISCRASQDIS
51 NYLNWYQQKP DGTFKLLIFY TSRLFSGVPS RFSGSGSGTD YSLTIYNLEQ
101 EDFATYFCQQ GDTLPYTFGG GTKVEIKRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERTIN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:175)
Nucleic acid sequence of the Ab-9 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTT'GCTCT GT1TICAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAT TACATCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC
151 AATTATTTAA ATTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT
201 TATCTTCTAC ACATCAAGAT TATTTTCAGG AGTCCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCATTTACAA CCTGGAGCAA
301 GAAGATTTTG CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC
351 TTTCGGAGGG GGGACCAAGG TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GT (SEQ ID NO:176)
Ab-9 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-9
HC:
1 EVQLQQSGPE LMKPGTSVKM SCKASGYTFT DYNME1WVKQT QGKTLEWIGE
51 :INPNSGGAGY NQKFKGKATL TVDKSSTTAY MELRSLTSED SAVYYCAICLG
101 yDD1YDDWYF DVWGAGTTVT VSSAKTTAPS VYPLAPVCGD TTGSSVTLGC
151 LVKGYFPEPV TLTWNSGSLS SDVHTFPALL QSGLYTLSSS VTVTTWPSQT
201 ITCNVAHPAS STKVDKKIEP RGSPTHKPCP PCPAPNLLGG PSVFIFPPKI
251 KDVLMISLSP MVTCVVVDVS EDDPDVHVSW FVNNVEVHTA QTQTHREDYN

CA 02947080 2016-11-01
301 STIRVVSALP1QYIQDWMSGK EFKCKVNNKA LPAPIERTIS KPKGPVRAPQ
351 VYVLPPPEEE MTKKQVTLTC MITDFMPEDI YVEWTNNGQT ELNYKNTEPV
401 LDSDGSYFMY SKLRVEKKNW VERNSYSCSV VHEGLHNHHT TKSFSRTPGK
(SEQ ID NO:177)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-9 HC:
1 GAGGTCCAAC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGACTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA TACATTCACT GACTACAACA
101 TGCACTGGGT GAAGCAGACC CAAGGAAAGA CCCTAGAGTG GATAGGAGAA
151 ATTAATCCTA ACAGTGGTGG TGCTGGCTAC AACCAGAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAC CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAAATTGGGC
301 TACGATGATA TCTACGACGA CTGGTA1T1C GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACAAC AGCCCCATCG GTCTATCCAC
401 TGGCCCCTGT GTGTGGAGAT ACAACTGGCT CCTCGGTGAC TCTAGGATGC
451 CTGGTCAAGG GTTATTTCCC TGAGCCAGTG ACCTTGACCT GGAACTCTGG
501 ATCCCTGTCC AGTGATGTGC ACACCTIVCC AGCTCTCCTG CAGTCTGGCC
551 TCTACACCCT CAGCAGCTCA GTGACTGTAA CCACCTGGCC CAGCCAGACC
601 ATCACCTGCA ATGTGGCCCA CCCGGCAAGC AGCACCAAAG TGGACAAGAA
651 AATTGAGCCC AGAGGGTCCC CAACACATAA ACCCTGTCCT CCATGCCCAG
701 CTCCTAACCT CTTGGGTGGA CCATCCGTCT TCATCTTCCC TCCAAAGATC
751 AAGGATGTAC TCATGATCTC CCTGAGCCCC ATGGTCACGT GTGTGGTGGT
801 GGATGTGAGC GAGGATGACC CAGATGTCCA TGTCAGCTGG TTCGTGAACA
851 ACGTGGAAGT ACACACAGCT CAGACACAAA CCCATAGAGA GGATTACAAC
901 AGTACTATCC GGGTGGTCAG TGCCCTCCCC ATCCAGCACC AGGACTGGAT
951 GAGTGGCAAG GAGTTCAAAT GCAAGGTCAA CAACAAAGCC CTCCCAGCGC
1001 CCATCGAGAG AACCATCTCA AAACCCAAAG GGCCAGTAAG AGCTCCACAG
1051 GTATATGTCT TGCCTCCACC AGAAGAAGAG ATGACTAAGA AACAGGTCAC
1101 TCTGACCTGC ATGATCACAG ACTTCATGCC TGAAGACATT TACGTGGAGT
1151 GGACCAACAA CGGGCAAACA GAGCTAAACT ACAAGAACAC TGAACCAGTC
1201 CTGGACTCTG ATGGTTCTTA CTTCATGTAC AGCAAGCTGA GAGTGGAAAA
1251 GAAGAACTGG GTGGAAAGAA ATAGCTACTC CTGTTCAGTG GTCCACGAGG
1301 GTCTGCACAA TCACCACACG ACTAAGAGCT TCTCCCGGAC TCCGGGTAAA
(SEQ ID NO:178)
Amino acid sequence of the Ab-9 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGTSVKMS CKASGYTFTD
51 YNMHWVKQTQ OKTLEWIGEI NPNSGGAGYN QKFKGKATLT VDKSSTTAYM
101 ELRSLTSEDS AVYYCAKLGY DDIYDDWYFD VWGAGTTVTV SSAKTTAPSV
151 YPLAPVCGDT TGSSVTLGCL VKGYFPEPVT LTWNSGSLSS DVHTFPALLQ
201 SGLYTLSSSV TVTTWPSQTI TCNVAHPASS TKVDKKIEPR GSPTHKPCPP
251 CPAPNLLGGP SVFIFPPK1K DVLMISLSPM VTCVVVDVSE DDPDVHVSWF
301 VNNVEVHTAQ TQTHREDYNS TIRVVSALPI QHQDWMSGKE FKCK'VNNICAL
351 PAPIERTISK PKGPVRAPQV YVLPPPEEEM TKKQVTLTCM ITDFMPEDIY
401 VEWTNNGQTE LNYKNTEPVL DSDGSYFMYS KLRVEKKNWV ERNSYSCSVV
451 HEGLHNHHTT KSFSRTPGK (SEQ ID NO:179)
Nucleic acid sequence of the Ab-9 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAACTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
66

CA 02947080 2016-11-01
....
101 GGACTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATATAC ATTCACTGAC
151 TACAACATGC ACTGGGTGAA GCAGACCCAA GGAAAGACCC TAGAGTGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTGC TGGCTACAAC CAGAAGTTCA
251 AGGGCAAGGC CACATTGACT GTAGACAAGT CCTCCACCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAA
351 ATTGGGCTAC GATGATATCT ACGACGACTG GTATTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACAACAGC CCCATCGGTC
451 TATCCACTGG CCCCTGTGTG TGGAGATACA ACTGGCTCCT CGGTGACTCT
501 AGGATGCCTG GTCAAGGGTT ATT1 ______ CCCTGA GCCAGTGACC TTGACCTGGA
551 ACTCTGGATC CCTGTCCAGT GATGTGCACA CCTTCCCAGC TCTCCTGCAG
601 TCTGGCCTCT ACACCCTCAG CAGCTCAGTG ACTGTAACCA CCTGGCCCAG
651 CCAGACCATC ACCTGCAATG TGGCCCACCC GGCAAGCAGC ACCAAAGTGG
701 ACAAGAAAAT TGAGCCCAGA GGGTCCCCAA CACATAAACC CTGTCCTCCA
751 TGCCCAGCTC CTAACCTCTT GGGTGGACCA TCCGTCTTCA TCTTCCCTCC
801 AAAGATCAAG GATGTACTCA TGATCTCCCT GAGCCCCATG GTCACGTGTG
851 TGGTGGTGGA TGTGAGCGAG GATGACCCAG ATGTCCATGT CAGCTGGTTC
901 GTGAACAACG TGGAAGTACA CACAGCTCAG ACACAAACCC ATAGAGAGGA
951 TTACAACAGT ACTATCCGGG TGGTCAGTGC CCTCCCCATC CAGCACCAGG
1001 ACTGGATGAG TGGCAAGGAG TTCAAATGCA AGGTCAACAA CAAAGCCCTC
1051 CCAGCGCCCA TCGAGAGAAC CATCTCAAAA CCCAAAGGGC CAGTAAGAGC
1101 TCCACAGGTA TATGTCTTGC CTCCACCAGA AGAAGAGATG ACTAAGAAAC
1151 AGGTCACTCT GACCTGCATG ATCACAGACT TCATGCCTGA AGACATTTAC
1201 GTGGAGTGGA CCAACAACGG GCAAACAGAG CTAAACTACA AGAACACTGA
1251 ACCAGTCCTG GACTCTGATG GTTCTTACTT CATGTACAGC AAGCTGAGAG
1301 TGGAAAAGAA GAACTGGGTG GAAAGAAATA GCTACTCCTG TTCAGTGGTC
1351 CACGAGGGTC TGCACAATCA CCACACGACT AAGAGCTTCT CCCGGACTCC
1401 GGGTAAA (SEQ ID NO:180)
Ab-10
The sequences of the Antibody 10 (also referred to herein as Ab-10) LC and HC
are as follows:
Ab-10 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-10
LC:
1 DIQMTQTTSS LSASLGDRVS ISCRASQDIS NYLNWYQQKP DGTFKLLIFY
51 'TSRLLSGVPS RFSGSGSGTD YSLTIYNLEQ ED-FATYFCQQ GITTLPtilFGG
101 GTKLEIKRAD AAPTVSIFPL SSEQLTSGGA SVVCFLIVNFY PKDINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:181)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-10 LC:
1 GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC AATTAITIAA
101 ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT TATCTTCTAC
151 ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC
201 TGGAACAGAT TATTCTCTCA CCATTTACAA CCTGGAGCAA GAAGAITFIG
251 CCACTTACTT TTGCCAACAG GGAGATACGC TTCCGTACAC ITI CGGAGGG
301 GGGACCAAAC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACTA TCCAGTGAGC AGTTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT
67

CA 02947080 2016-11-01
451 GATGGCAGTG 4A.CGACAAAA TGGCGTCCTG AACAGTTGGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GTTAG (SEQ ID
NO:182)
Amino acid sequence of the Ab-10 LC including signal peptide:
1 1VNISSAQFLGL LLLCFQGTRC DIQMTQTTSS LSASLGDRVS ISCRASQDIS
51 NYLNWYQQKP DGTFKLLIFY TSRLLSGVPS RFSGSGSGTD YSLTIYNLEQ
101 EDFATYFCQQ GDTLPYTFGG GTKLEIKRAD AAPTVSIFPL SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWIT)QDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:183)
Nucleic acid sequence of the Ab-10 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGITGCTCT GTTTTCAAGG
51 TACCAGATGT GATATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGGGTCTCC ATCAGTTGCA GGGCAAGTCA AGACATTAGC
151 AA1TA'1T1AA ACTGGTATCA GCAGAAACCA GATGGAACTT TTAAACTCCT
201 TATCTTCTAC ACATCAAGAT TACTCTCAGG AGTCCCATCA AGGTTCAGTG
251 GCAGTGGGTC TGGAACAGAT TATT'CTCTCA CCATTTACAA CCTGGAGCAA
301 GAAGAT1T1G CCACTTAC'TT TTGCCAACAG GGAGATACGC TTCCGTACAC
351 TT'TCGGAGGG GGGACCAAAC TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT CTTCCCACTA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GTTAG (SEQ ID NO:184)
Ab-10 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-10
HC:
1 EVQLQQSGPE LMKPGASVKM SCKASGYTFT bYl\TIVIHWVKQN QGKTLEWIG
51 1NPNSGGAdYNQ¨KTEKGKATL TVDKSSTTAY MELRSLTSED SAVYYCARL9
101 VDDIYIDDWYF DVW-GAGTTVT VSSAKTTPPS VYPLAPGSAA QTNSMVTLGC
151 LVICGYF.PEPV TVTWNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQPREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQMAK DKVSLTCMIT DFFPEDITVE WQWNGQPAEN YKNTQPIMDT
401 DGSYFIYSKL NVQKS1VWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:185)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-10 HC:
1 GAGGTCCAAC TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA TACATTCACT GACTACAACA
101 TGCACTGGGT GAAGCAGAAC CAAGGAAAGA CCCTAGAATG GATAGGAGAA
68

CA 02947080 2016-11-01
151 ATTAATCCTA ACAGTGGTGG TGCTGGCTAC AACCAGAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAC CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGATTGGGC
301 TACGATGATA TCTACGACGA CTGGTACTTC GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCAG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTATTTCCC TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAATT GTGCCCAGGG ATTGTGGTTG TAAGCCTTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTT'TGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
901 CGCTCAGTCA GTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC TTTCCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
1051 ATT'CCACCTC CCAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATACM ______ CA CCTGCTCTGT GTTACATGAG GGCCTGCACA
1301 ACCACCATAC TGAGAAGAGC CTCTCCCACT CTCCTGGTAA ATGA (SEQ ID
NO:186)
Amino acid sequence of the Ab-10 HC including signal peptide:
1 MGWSWTFLFL LSGTAGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNMHWVKQNQ GKTLEWIGEI NPNSGGAGYN QKFKGKATLT VDKSSTTAYM
101 ELRSLTSEDS AVYYCARLGY DDIYDDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
201 SDLYTLSSSV TVPSSTWPSE TVTCNVAIIPA SSTKVDKKIV PRDCGCKPCI
251 CTVPEVSSVF IFPPKPKDVL TITLTPKVTC VVVDISKDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPIMHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPKEQMAKD KVSLTCMITD FFPEDITVEW
401 Q'WNGQPAENY KNTQPIMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLHEG
451 LHNHHTEKSL SHSPGK (SEQ ID NO:187)
Nucleic acid sequence of the Ab-10 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTGCAGGTGT
51 CCTCTCTGAG GTCCAACTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATATAC ATTCACTGAC
151 TACAACATGC ACTGGGTGAA GCAGAACCAA GGAAAGACCC TAGAATGGAT
201 AGGAGAAATT AATCCTAACA GTGGTGGTGC TGGCTACAAC CAGAAGTTCA
251 AGGGCAAGGC CACATTGACT GTAGACAAGT CCTCCACCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATT'GGGCTAC GATGATATCT ACGACGACTG GTACTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCAGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
501 GGGATGCCTG GTCAAGGGCT ATTTCCCTGA GCCAGTGACA GTGACCTGGA
69

CA 02947080 2016-11-01
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACGTTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATCTTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTTGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTTCAACAG
951 CACTTTCCGC TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GTTCAAATGC AGGGTCAACA GTGCAGCTTT CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACATTAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
1251 GGACACAGAT GGCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT ACTTTCACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAATG
1401 A (SEQ LD NO:188)
= 20 Ab-11
The sequences of the Antibody 11 (also referred to herein as Ab-11) LC and HC
are as follows:
Ab-11 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-11
LC:
1 QIVLSQSPAF LSVSPGDKVT MTCRASSSIS YIHWFQQKPG SSPRSWIYAT
51 SAASGVPGR FSGSGSGTSY SLTISRVEAE DAATYYCQQW SSDPLT,FGAG
101 TKLELKRADA APTVSIFPPS SEQLTSGGAS VVCFLNNFYP KDINVKWKID
151 GSERQNGVLN SWTDQDSKDS TYSMSSTLTL TKDEYERHNS YTCEATHKTS
201 TSPIVKSFNR NEC (SEQ ID NO:189)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-11 LC:
1 CAAATTGTTC TCTCCCAGTC TCCAGCATTC CTGTCTGTAT CTCCAGGGGA
51 TAAGGTCACA ATGACTTGCA GGGCCAGCTC AAGTATAAGT TACATACACT
101 GGITI CAGCA GAAGCCAGGA TCCTCCCCCA GATCCTGGAT TTATGCCACA
151 TCCAACCTGG CTTCTGGAGT CCCTGGTCGC TTCAGTGGCA GTGGGTCTGG
201 GACCTCTTAC TCTCTCACAA TCAGCAGAGT GGAGGCTGAG GATGCTGCCA
251 CTTATTACTG CCAGCAGTGG AGTAGTGACC CACTCACGTT CGGTGCTGGG
301 ACCAAGCTGG AGCTGAAACG GGCTGATGCT GCACCAACTG TATCCATCTT
351 CCCACCATCC AGTGAGCAGT TAACATCTGG AGGTGCCTCA GTCGTGTGCT
401 TCTTGAACAA CTTCTACCCC AAAGACATCA ATGTCAAGTG GAAGATTGAT
451 GGCAGTGAAC GACAAAATGG CGTCCTGAAC AGTTGGACTG ATCAGGACAG
501 CAAAGACAGC ACCTACAGCA TGAGCAGCAC CCTCACGTTG ACCAAGGACG
551 AGTATGAACG ACATAACAGC TATACCTGTG AGGCCACTCA CAAGACATCA
601 ACTLCACCCA TTGTCAAGAG CTTCAACAGG AATGAGTGTT AG (SEQ ID
NO:190)
Amino acid sequence of the Ab-11 LC including signal peptide:
1 MDFQVQEFSF LLISASVIMS RGQIVLSQSP AFLSVSPGDK VTMTCRASSS

CA 02947080 2016-11-01
51.1SYIEIWFOQX POSSPRSWIY ATSNLASGVP GRFSGSGSGT SYSLTISRVE
101 AEDAATYYCQ QWSSDPLTFG AGTKLELKRA DAAPTVSIFP PSSEQLTSGG
151 ASVVCFLNNF YPKD1NVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL
201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC (SEQ ID NO:191)
Nucleic acid sequence of the Ab-11 LC including signal peptide encoding
sequence:
1 ATGGAMTC AAGTGCAGAT TTTCAGCTTC CTGCTAATCA GTGCTTCAGT
51 CATAATGTCC AGAGGACAAA TTGT"TCTCTC CCAGTCTCCA GCATTCCTGT
101 CTGTATCTCC AGGGGATAAG GTCACAATGA CTTGCAGGGC CAGCTCAAGT
151 ATAAGTTACA TACACTGGT"T TCAGCAGAAG CCAGGATCCT CCCCCAGATC
201 CTGGA ITI AT GCCACATCCA ACCTGGCTTC TGGAGTCCCT GGTCGCTTCA
251 GTGGCAGTGG GTCTGGGACC TCTTACTCTC TCACAATCAG CAGAGTGGAG
301 GCTGAGGATG CTGCCACTTA TTACTGCCAG CAGTGGAGTA GTGACCCACT
351 CACGTTCGGT GCTGGGACCA AGCTGGAGCT GAAACGGGCT GATGCTGCAC
401 CAACTGTATC CATCTTCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT
451 GCCTCAGTCG TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT
501 CAAGTGGAAG ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT
551 GGACTGATCA GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC
601 ACGTI'GACCA AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC
651 CACTCACAAG ACATCAACTT CACCCATTGT CAAGAGCTTC AACAGGAATG
701 AGTGTTAG (SEQ ID NO:192)
Ab-11 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-11
HC:
1 EVQLQQSGAD LVQPGASVKV SCTASGFD1K bYY11-IWMKQR PDQGLEWIGg
51 VDPDNGETEF APKITGKATF TTDTSSNTAY 1_,QLRGLTSED TAIYYCGRED
101 YDGTYTWFPY WGQGTLVTVS AAKTTPPSVY PLAPGSAAQT NSMVTLGCLV
151 ied YFPEPVTV TWNSGSLSSG VHTFPAVLQS DLYTLSSSVT VPSSTWPSET
201 VTCNVAHPAS STKVDKKIVP RDCGCKPCIC TVPEVSSVFI FPPKPKDVLT
251 ITLTPKVTCV VVDISKDDPE VQFSWFVDDV EVHTAQTQPR EEQFNSTFRS
301 VSELPIMHQD WLNGKEFKCR VNSAAFPAPI EKTISKTKGR PKAPQVYTIP
351 PPKEQMAIWK VSLTCMITDF FPEDITVEWQ WNGQPAENYK NTQPIllIDTDG
401 SYFIYSKLNV QKS1VWEAGNT FTCSVLHEGL HNHHTEKSLS HSPGK (SEQ ID
NO:193)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-11 HC:
1 GAAGTTCAGC TGCAACAGTC TGGGGCAGAC CTTGTGCAGC CAGGGGCCTC
51 AGTCAAGGTG TCCTGCACAG CTTCTGGCTT CGACATTAAG GACTACTATA
101 TACACTGGAT GAAACAGAGG CCTGACCAGG GCCTGGAGTG GATTGGAAGG
151 GTTGATCCTG ACAATGGTGA GACTGAA1T1 GCCCCGAAGT TCCCGGGCAA
201 GGCCACTTT'T ACAACAGACA CATCCTCCAA CACAGCCTAC CTACAACTCA
251 GAGGCCTGAC ATCTGAGGAC ACTGCCATCT ATTACTGTGG GAGAGAAGAC
301 TACGATGGTA CCTACACCTG GTTTCCTTAT TGGGGCCAAG GGACTCTGGT
351 CACTGTCTCT GCAGCCAAAA CGACACCCCC ATCTGTCTAT CCACTGGCCC
401 CTGGATCTGC TGCCCAAACT AACTCCATGG TGACCCTGGG ATGCCTGGTC
451 AAGGGCTATT TCCCTGAGCC AGTGACAGTG ACCTGGAACT CTGGATCCCT
501 GTCCAGCGGT GTGCACACCT TCCCAGCTGT CCTGCAGTCT GACCTCTACA
551 CTCTGAGCAG CTCAGTGACT GTCCCCTCCA GCACCTGGCC CAGCGAGACC
71

CA 02947080 2016-11-01
601 U 1 UACCTGCA ACGTTGCCCA CCCGGCCAGC AGCACCAAGG TGGACAAGAA
651 AATTGTGCCC AGGGATTGTG GTTGTAAGCC TTGCATATGT ACAGTCCCAG
701 AAGTATCATC TGTCTTCATC TTCCCCCCAA AGCCCAAGGA TGTGCTCACC
751 ATTACTCTGA CTCCTAAGGT CACGTGTGTT GTGGTAGACA TCAGCAAGGA
801 TGATCCC GAG GTCCAGTTCA GCTGG1T1GT AGATGATGTG GAGGTGCACA
851 CAGCTCAGAC GCAACCCCGG GAGGAGCAGT TCAACAGCAC Fri ________________ CCGCTCA
901 GTCAGTGAAC TTCCCATCAT GCACCAGGAC TGGCTCAATG GCAAGGAGTT
951 CAAATGCAGG GTCAACAGTG CAGC _____________________________________ Fri CCC
TGCCCCCATC GAGAAAACCA
1001 TCTCCAAAAC CAAAGGCAGA CCGAAGGCTC CACAGGTGTA CACCATTCCA
1051 CCTCCCAAGG AGCAGATGGC CAAGGATAAA GTCAGTCTGA CCTGCATGAT
1101 AACAGACTTC TTCCCTGAAG ACATTACTGT GGAGTGGCAG TGGAATGGGC
1151 AGCCAGCGGA GAACTACAAG AACACTCAGC CCATCATGGA CACAGATGGC
1201 TCTTACTTCA TCTACAGCAA GCTCAATGTG CAGAAGAGCA ACTGGGAGGC
1251 AGGAAATACT TTCACCTGCT CTGTGTTACA TGAGGGCCTG CACAACCACC
1301 ATACTGAGAA GAGCCTCTCC CACTCTCCTG GTAAATGA (SEQ ID NO:194)
Amino acid sequence of the Ab-11 HC including signal peptide:
1 MKCSWVIFFL MAVVTGVNSE VQLQQSGADL VQPGASVKVS CTASGFDIKD
51 YY11-1WMKQRP DQGLEWIGRV DPDNGETEFA PKFPGKATFT TDTSSNTAYL
101 QLRGLTSEDT AIYYCGREDY DGTYTWFPYW GQGTLVTVSA AKTTPPSVYP
151 LAPGSAAQTN SMVTLGCLVK GYFPEPVTVT 'WNSGSLSSGV HTFPAVLQSD
201 LYTLSSSVTV PS STWPSETV TCNVAHPASS TKVDKKIVPR DCGCKPCICT
251 VPEVSSVFIF PPKPKDVLTI TLTPKVTCVV VDISKDDPEV QFSWFVDDVE
301 VHTAQTQPRE EQFNSTFRSV SELPIMHQDW LNGKEFKCRV NSAAFPAPIE
351 KTISKTKGRP KAPQVYTIPP PKEQMAKDKV SLTCMITDFF PEDITVEWQW
401 NGQPAENYKN TQPIMDTDGS YFIYSKLNVQ KSNWEAGNTF TCSVLHEGLH
451 NHHTEKSLSH SPGK (SEQ ID NO:195)
Nucleic acid sequence of the Ab-11 HC including signal peptide encoding
sequence:
1 ATGAAATGCA GCTGGGTCAT CTTCTTCCTG ATGGCAGTGG TTACAGGGGT
51 CAATTCAGAA GTTCAGCTGC AACAGTCTGG GGCAGACCTT GTGCAGCCAG
101 GGGCCTCAGT CAAGGTGTCC TGCACAGCTT CTGGCTTCGA CATTAAGGAC
151 TACTATATAC ACTGGATGAA ACAGAGGCCT GACCAGGGCC TGGAGTGGAT
201 TGGAAGGGTT GATCCTGACA ATGGTGAGAC TGAATTTGCC CCGAAGTTCC
_____________________________________________________________ 251 CGGGCAAGGC
CAC rill ACA ACAGACACAT CCTCCAACAC AGCCTACCTA
301 CAACTCAGAG GCCTGACATC TGAGGACACT GCCATCTATT ACTGTGGGAG
351 AGAAGACTAC GATGGTACCT ACACCTGGTT TCCTTATTGG GGCCAAGGGA
401 CTCTGGTCAC TGTCTCTGCA GCCAAAACGA CACCCCCATC TGTCTATCCA
451 CTGGCCCCTG GATCTGCTGC CCAAACTAAC TCCATGGTGA CCCTGGGATG
501 CCTGGTCAAG GGCTATTTCC CTGAGCCAGT GACAGTGACC TGGAACTCTG
551 GATCCCTGTC CAGCGGTGTG CACACCTTCC CAGCTGTCCT GCAGTCTGAC
601 CTCTACACTC TGAGCAGCTC AGTGACTGTC CCCTCCAGCA CCTGGCCCAG
651 CGAGACCGTC ACCTGCAACG TTGCCCACCC GGCCAGCAGC ACCAAGGTGG
701 ACAAGAAAAT TGTGCCCAGG GATTGTGGTT GTAAGCCTTG CATATGTACA
751 GTCCCAGAAG TATCATCTGT CTTCATCTTC CCCCCAAAGC CCAAGGATGT
801 GCTCACCATT ACTCTGACTC CTAAGGTCAC GTGTGTTGTG GTAGACATCA
851 GCAAGGATGA TCCCGAGGTC CAGTTCAGCT GGITI _________________________ GTAGA
TGATGTGGAG
901 GTGCACACAG CTCAGACGCA ACCCCGGGAG GAGCAGTTCA ACAGCACIIT
951 CCGCTCAGTC AGTGAAC1TC CCATCATGCA CCAGGACTGG CTCAATGGCA
__________________________________________ 1001 AGGAG'TTCAA ATGCAGGGTC
AACAGTGCAG Cr11 CCCTGC CCCCATCGAG
72

CA 02947080 2016-11-01
1051 AAAACCATCT"CCAAAACCAA AGGCAGACCG AAGGCTCCAC AGGTGTACAC
1101 CA'TTCCACCT CCCAAGGAGC AGATGGCCAA GGATAAAGTC AGTCTGACCT
1151 GCATGATAAC AGACTTCTTC CCTGAAGACA 'TTACTGTGGA GTGGCAGTGG
1201 AATGGGCAGC CAGCGGAGAA CTACAAGAAC ACTCAGCCCA TCATGGACAC
1251 AGATGGCTCT TACTTCATCT ACAGCAAGCT CAATGTGCAG AAGAGCAACT
1301 GGGAGGCAGG AAATACTTTC ACCTGCTCTG TGTTACATGA GGGCCTGCAC
1351 AACCACCATA CTGAGAAGAG CCTCTCCCAC TCTCCTGGTA AATGA (SEQ ID
NO:196)
Ab-12
The sequences of the Antibody 12 (also referred to herein as Ab-12) LC and HC
are as follows:
Ab-12 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-12
LC:
1 DLQMTQ'TTSS LSASLGDRVT ISCRAZSQDIS NYLNWYQQKP DGTVKLLIFY
51 TSTLQS:GVPS RFSGSGSGTN YSLTITNLEQ DDAATYFCQQ GDTLPYTFGO
101 GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA SVVCFLNNFY PiDINVKWKI
151 DGSERQNGVL NSWTDQDSKD STYSMSSTLT LTKDEYERHN SYTCEATHKT
201 STSPIVKSFN RNEC (SEQ ID NO:197)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-12 LC:
1 GATCTCCAGA TGACACAGAC TACTTCCTCC CTGTCTGCCT CTCTGGGAGA
51 CAGAGTCACC ATCAGTTGCA GGGCAAGTCA GGACATTAGC AATTATTTAA
101 ACTGGTATCA GCAGAAACCA GATGGAACTG TTAAGCTCCT GATCTTCTAC
151 ACATCAACAT TACAGTCAGG AGTCCCATCG AGGTTCAGTG GCAGTGGGTC
201 TGGAACAAAT TATTCTCTCA CCATTACCAA CCTGGAGCAA GATGATGCTG
251 CCACTTACTT T'TGCCAACAG GGTGATACGC TTCCGTACAC GTTCGGAGGG
301 GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA CTGTATCCAT
351 CTTCCCACCA TCCAGTGAGC AG'TTAACATC TGGAGGTGCC TCAGTCGTGT
401 GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA GTGGAAGATT'
451 GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTT'GGA CTGATCAGGA
501 CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG TTGACCAAGG
551 ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC TCACAAGACA
601 TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT GTTAG (SEQ ID
NO:198)
Amino acid sequence of the Ab-12 LC including signal peptide:
1 MMSSAQFLGL LLLCFQGSRC DLQMTQTTSS LSASLGDRVT ISCRASQDIS
51 NYLNWYQQKP DGTVKLLIFY TSTLQSGVPS RFSGSGSGTN YSLTITNLEQ
101 DDAATYFCQQ GDTLPYTFGG GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA
151 SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
201 LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC (SEQ ID NO:199)
Nucleic acid sequence of the Ab-12 LC including signal peptide encoding
sequence:
1 ATGATGTCCT CTGCTCAGTT CCTTGGTCTC CTGTTGCTCT GMTCAAGG
51 TTCCAGATGT GATCTCCAGA TGACACAGAC TACTTCCTCC CTGTCTGCCT
101 CTCTGGGAGA CAGAGTCACC ATCAGTTGCA GGGCAAGTCA GGACATTAGC
73

CA 02947080 2016-11-01
11õ,it "11 II
151 AATTAITI ______________________________________________________ AA
AtTGGTATCA GCAGAAACCA GATGGAACTG TTAAGCTCCT
201 GATCTTCTAC ACATCAACAT TACAGTCAGG AGTCCCATCG AGGTTCAGTG
251 GCAGTGGGTC TGGAACAAAT TATTCTCTCA CCATTACCAA CCTGGAGCAA
301 GATGATGCTG CCACTTACTT TTGCCAACAG GGTGATACGC TTCCGTACAC
351 GTTCGGAGGG GGGACCAAGC TGGAAATAAA ACGGGCTGAT GCTGCACCAA
401 CTGTATCCAT C'TTCCCACCA TCCAGTGAGC AGTTAACATC TGGAGGTGCC
451 TCAGTCGTGT GCTTCTTGAA CAACTTCTAC CCCAAAGACA TCAATGTCAA
501 GTGGAAGATT GATGGCAGTG AACGACAAAA TGGCGTCCTG AACAGTTGGA
551 CTGATCAGGA CAGCAAAGAC AGCACCTACA GCATGAGCAG CACCCTCACG
601 TTGACCAAGG ACGAGTATGA ACGACATAAC AGCTATACCT GTGAGGCCAC
651 TCACAAGACA TCAACTTCAC CCATTGTCAA GAGCTTCAAC AGGAATGAGT
701 GTTAG (SEQ ID NO:200)
Ab-12 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-12
HC:
1 EVQLQQSGPE LMKPGASVKM SCKASGYTFT DYNMHWMKQN QGKSLEWIGE
51 INPNSGGSGY NQKFKGKATL TVDKSSSTAY MELRSLTSED SAVYYCARLO
101 yyGNYEDWYF DVWdAGITVT VSSAKTTPPS VYPLAPGSAA QTNSMVTLGC
151 LVKGYFPEPV TVTFVNSGSLS SGVHTFPAVL QSDLYTLSSS VTVPSSTWPS
201 ETVTCNVAHP ASSTKVDKKI VPRDCGCKPC ICTVPEVSSV FIFPPKPKDV
251 LTITLTPKVT CVVVDISKDD PEVQFSWFVD DVEVHTAQTQ PREEQFNSTF
301 RSVSELPIMH QDWLNGKEFK CRVNSAAFPA PIEKTISKTK GRPKAPQVYT
351 IPPPKEQMAK DKVSLTCMIT DFFPEDITVE WQWNGQPAEN YKNTQPIMDT
401 DGSYFIYSKL NVQKSNWEAG NTFTCSVLHE GLHNHHTEKS LSHSPGK (SEQ ID
NO:201)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-12 HC:
1 GAGGTCCAGT TGCAACAGTC TGGACCTGAA CTAATGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGCAAGG CTTCTGGATA CACATT'CACT GACTACAACA
101 TGCACTGGAT GAAGCAGAAC CAAGGAAAGA GCCTAGAGTG GATAGGAGAG
151 ATTAATCCTA ACAGTGGTGG TTCTGGTTAC AACCAGAAGT TCAAAGGCAA
201 GGCCACATTG ACTGTAGACA AGTCCTCCAG CACAGCCTAC ATGGAGCTCC
251 GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGATTGGGC
301 TACTATGGTA ACTACGAGGA CTGGTAIT1 C GATGTCTGGG GCGCAGGGAC
351 CACGGTCACC GTCTCCTCTG CCAAAACGAC ACCCCCATCT GTCTATCCAC
401 TGGCCCCTGG ATCTGCTGCC CAAACTAACT CCATGGTGAC CCTGGGATGC
451 CTGGTCAAGG GCTA _______________________________________________ in CCC
TGAGCCAGTG ACAGTGACCT GGAACTCTGG
501 ATCCCTGTCC AGCGGTGTGC ACACCTTCCC AGCTGTCCTG CAGTCTGACC
551 TCTACACTCT GAGCAGCTCA GTGACTGTCC CCTCCAGCAC CTGGCCCAGC
601 GAGACCGTCA CCTGCAACGT TGCCCACCCG GCCAGCAGCA CCAAGGTGGA
651 CAAGAAAATT GTGCCCAGGG ATTGTGGTT'G TAAGCCTTGC ATATGTACAG
701 TCCCAGAAGT ATCATCTGTC TTCATCTTCC CCCCAAAGCC CAAGGATGTG
751 CTCACCATTA CTCTGACTCC TAAGGTCACG TGTGTTGTGG TAGACATCAG
801 CAAGGATGAT CCCGAGGTCC AGTTCAGCTG GTTTGTAGAT GATGTGGAGG
851 TGCACACAGC TCAGACGCAA CCCCGGGAGG AGCAGTTCAA CAGCACTTTC
901 CGCTCAGTCA GTGAACTTCC CATCATGCAC CAGGACTGGC TCAATGGCAA
951 GGAGTTCAAA TGCAGGGTCA ACAGTGCAGC ITICCCTGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGCAGACCGA AGGCTCCACA GGTGTACACC
1051 ATTCCACCTC CCAAGGAGCA GATGGCCAAG GATAAAGTCA GTCTGACCTG
74

CA 02947080 2016-11-01
1101 CATGATAACA GACTTCTTCC CTGAAGACAT TACTGTGGAG TGGCAGTGGA
1151 ATGGGCAGCC AGCGGAGAAC TACAAGAACA CTCAGCCCAT CATGGACACA
1201 GATGGCTCTT ACTTCATCTA CAGCAAGCTC AATGTGCAGA AGAGCAACTG
1251 GGAGGCAGGA AATACITT'CA CCTGCTCTGT GTTACATGAG GGCCTGCACA
1301 ACCACCATAC TGAGAAGAGC CTCTCCCACT CTCCTGGTAA ATGA (SEQ ID
NO:202)
Amino acid sequence of the Ab-12 HC including signal peptide:
1 MGWSWTFLFL LSGTSGVLSE VQLQQSGPEL MKPGASVKMS CKASGYTFTD
51 YNMHWMKQNQ GKSLEWIGEI NPNSGGSGYN QKFKGKATLT VDKSSSTAYM
101 ELRSLTSEDS AVYYCARLGY YGNYEDWYFD VWGAGTTVTV SSAKTTPPSV
151 YPLAPGSAAQ TNSMVTLGCL VKGYFPEPVT VTWNSGSLSS GVHTFPAVLQ
201 SDLYTLSSSV TVPSSTWPSE TVTCNVAHPA SSTKVDKKIV PRDCGCKPCI
251 CTVPEVSSVF IFPPKPKDVL TITLTPKVTC VVVDISKDDP EVQFSWFVDD
301 VEVHTAQTQP REEQFNSTFR SVSELPIMHQ DWLNGKEFKC RVNSAAFPAP
351 IEKTISKTKG RPKAPQVYTI PPPKEQMAKD KVSLTCMITD FFPEDITVEW
401 Q'WNGQPAENY KNTQPLMDTD GSYFIYSKLN VQKSNWEAGN TFTCSVLHEG
451 LHNHHTEKSL SHSPGK (SEQ ID NO:203)
Nucleic acid sequence of the Ab-12 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTGGACCTT TCTCTTCCTC CTGTCAGGAA CTTCGGGTGT
51 CCTCTCTGAG GTCCAGTTGC AACAGTCTGG ACCTGAACTA ATGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGCAAGGCTT CTGGATACAC ATTCACTGAC
151 TACAACATGC ACTGGATGAA GCAGAACCAA GGAAAGAGCC TAGAGTGGAT
201 AGGAGAGATT AATCCTAACA GTGGTGGTTC TGGTTACAAC CAGAAGTT'CA
251 AAGGCAAGGC CACATTGACT GTAGACAAGT CCTCCAGCAC AGCCTACATG
301 GAGCTCCGCA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 ATTGGGCTAC TATGGTAACT ACGAGGACTG GTATTTCGAT GTCTGGGGCG
401 CAGGGACCAC GGTCACCGTC TCCTCTGCCA AAACGACACC CCCATCTGTC
451 TATCCACTGG CCCCTGGATC TGCTGCCCAA ACTAACTCCA TGGTGACCCT
501 GGGATGCCTG GTCAAGGGCT ATTTCCCTGA GCCAGTGACA GTGACCTGGA
551 ACTCTGGATC CCTGTCCAGC GGTGTGCACA CCTTCCCAGC TGTCCTGCAG
601 TCTGACCTCT ACACTCTGAG CAGCTCAGTG ACTGTCCCCT CCAGCACCTG
651 GCCCAGCGAG ACCGTCACCT GCAACGTTGC CCACCCGGCC AGCAGCACCA
701 AGGTGGACAA GAAAATTGTG CCCAGGGATT GTGGTTGTAA GCCTTGCATA
751 TGTACAGTCC CAGAAGTATC ATCTGTCTTC ATC'TTCCCCC CAAAGCCCAA
801 GGATGTGCTC ACCATTACTC TGACTCCTAA GGTCACGTGT GTTGTGGTAG
851 ACATCAGCAA GGATGATCCC GAGGTCCAGT TCAGCTGGTT TGTAGATGAT
901 GTGGAGGTGC ACACAGCTCA GACGCAACCC CGGGAGGAGC AGTT'CAACAG
951 CACTTTCCGC TCAGTCAGTG AACTTCCCAT CATGCACCAG GACTGGCTCA
1001 ATGGCAAGGA GTTCAAATGC AGGGTCAACA GTGCAGCTTT CCCTGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGC AGACCGAAGG CTCCACAGGT
1101 GTACACCATT CCACCTCCCA AGGAGCAGAT GGCCAAGGAT AAAGTCAGTC
1151 TGACCTGCAT GATAACAGAC TTCTTCCCTG AAGACAT'TAC TGTGGAGTGG
1201 CAGTGGAATG GGCAGCCAGC GGAGAACTAC AAGAACACTC AGCCCATCAT
1251 GGACACAGAT GGCTCTTACT TCATCTACAG CAAGCTCAAT GTGCAGAAGA
1301 GCAACTGGGA GGCAGGAAAT ACTTTCACCT GCTCTGTGTT ACATGAGGGC
1351 CTGCACAACC ACCATACTGA GAAGAGCCTC TCCCACTCTC CTGGTAAATG
1401 A (SEQ ID NO:204)

CA 02947080 2016-11-01
Ab-13
The sequences of the Antibody 13 (also referred to herein as Ab-13) LC and HC
are as follows:
Ab-13 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-13
LC:
1 QIVLTQSPAI MSASPGEKVT MTCRASSSVT SSYLN;WYQQK PGSSPKLWIY
51 STSNLASGVP ARFSGSGSGT SYSLTISSVE AEDAATYYM QYDFFPSTFG
101 GGTKLEIKRA DAAPTVSIFP PSSEQLTSGG ASVVCFLNNF YPKDINVICWK
151 IDGSERQNGV LNSWTDQDSK DSTYSMSSTL TLTKDEYERH NSYTCEATHK
201 TSTSPIVKSF NRNEC (SEQ ID NO:205)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-13 LC:
1 CAGATTGTTC TCACCCAGTC TCCAGCAATC ATGTCTGCAT CTCCAGGGGA
51 GAAGGTCACC ATGACCTGCA GGGCCAGCTC AAGTGTAACT TCCAGTTACT
_________________________________________________________ 101 TGAACTGGTA
CCAGCAGAAG CCAGGATCTT CCCCCAAACT CTGGAFFI AT
151 AGCACATCCA ACCTGGCTTC AGGAGTCCCA GCTCGCTTCA GTGGCAGTGG
201 GTCTGGGACC TCTTACTCTC TCACAATCAG CAGTGTGGAG GCTGAGGATG
251 CTGCCACTTA TTACTGCCAG CAGTATGATT TTITCCCATC GACGTTCGGT
301 GGAGGCACCA AGCTGGAAAT CAAGCGGGCT GATGCTGCAC CAACTGTATC
351 CATCTTCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT GCCTCAGTCG
401 TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT CAAGTGGAAG
451 ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT GGACTGATCA
501 GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC ACGTTGACCA
551 AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC CACTCACAAG
601 ACATCAACTT CACCCATCGT CAAGAGCTTC AACAGGAATG AGTGT (SEQ ID
NO:206)
Amino acid sequence of the Ab-13 LC including signal peptide:
1 MDSQVQIFSF LLISALVKMS RGQIVLTQSP AIMSASPGEK VTMTCRASSS
51 VTSSYLNWYQ QKPGSSPKLW IYSTSNLASG VPARFSGSGS GTSYSLTISS
101 VEAEDAATYY CQQYDFFPST FGGGTKLEIK RADAAPTVSI FPPSSEQLTS
151 GGASVVCFLN NFYPKDINVK WKIDGSERQN GVLNSWTDQD SKDSTYSMSS
201 TLTLTKDEYE RHNSYTCEAT HKTSTSPIVK SFNRNEC (SEQ ID NO:207)
Nucleic acid sequence of the Ab-13 LC including signal peptide encoding
sequence:
1 ATGGATTCTC AAGTGCAGAT TTTCAGCTTC CTTCTAATCA GTGCCTTAGT
51 CAAAATGTCC AGAGGACAGA TTGTTCTCAC CCAGTCTCCA GCAATCATGT
101 CTGCATCTCC AGGGGAGAAG GTCACCATGA CCTGCAGGGC CAGCTCAAGT
151 GTAACTTCCA GTTACTTGAA CTGGTACCAG CAGAAGCCAG GATCTTCCCC
201 CAAACTCTGG ATrIATAGCA CATCCAACCT GGCTTCAGGA GTCCCAGCTC
251 GCTTCAGTGG CAGTGGGTCT GGGACCTCTT ACTCTCTCAC AATCAGCAGT
301 GTGGAGGCTG AGGATGCTGC CACTTATTAC TGCCAGCAGT ATGA 1-1-1 FIT
351 CCCATCGACG TTCGGTGGAG GCACCAAGCT GGAAATCAAG CGGGCTGATG
401 CTGCACCAAC TGTATCCATC TTCCCACCAT CCAGTGAGCA GTTAACATCT
451 GGAGGTGCCT CAGTCGTGTG CTTCTTGAAC AACTTCTACC CCAAAGACAT
501 CAATGTCAAG TGGAAGATTG ATGGCAGTGA ACGACAAAAT GGCGTCCTGA
76

CA 02947080 2016-11-01
551 ACAGTTGGAC TGATCAGGAC AGCAAAGACA GCACCTACAG CATGAGCAGC
601 ACCCTCACGT TGACCAAGGA CGAGTATGAA CGACATAACA GCTATACCTG
651 TGAGGCCACT CACAAGACAT CAACTTCACC CATCGTCAAG AGCTTCAACA
701 GGAATGAGTG T (SEQ ID NO:208)
Ab-13 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-13
HC:
1 EVQLQQSGPE LVICPGASVKM SCKASGYTFT DYYMNWVKQS HGESLEWIGP
51 INPYNDDTTY NHKFKGKATL TVDKSSNTAY MQLNSLTSED SAVYYCARET
101 AVITTNAMDY WGQGTSVTVS SAKTTPPSVY PLAPGSAAQT NSMVTLGCLV
151 KGYFPEPVTV TWNSGSLSSG VHTFPAVLQS DLYTLSSSVT VPSSTWPSET
201 VTCNVAHPAS STKVDKKIVP RDCGCKPCIC TVPEVSSVFI FPPKPKDVLT
251 1TLTPKVTCV VVDISKDDPE VQFSWFVDDV EVHTAQTQPR EEQFNSTFRS
301 VSELPIMHQD WLNGKEFKCR VIVSAAFPAPI EKTISKTKGR PKAPQVYTIP
351 PPKEQIIIAKDK VSLTCMITDF FPEDITVEWQWNGQPAENYK NTQPIMDTDG
401 SYFIYSKLNV QKS1VWEAGNT FTCSVLHEGL H1VHHTEKSLS HSPGK (SEQ ID
NO:209)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-13 HC:
1 GAGGTCCAGC TGCAACAATC TGGACCTGAG CTGGTGAAGC CTGGGGCTTC
51 AGTGAAGATG TCCTGTAAGG CTTCTGGATA CACATTCACT GACTACTACA
101 TGAACTGGGT GAAGCAGAGC CATGGAGAGA GCCTTGAGTG GATT'GGAGAT
151 ATT'AATCCTT ACAACGATGA TACTACCTAC AACCACAAGT TCAAGGGCAA
201 GGCCACATTG ACTGTAGACA AATCCTCCAA CACAGCCTAC ATGCAGCTCA
251 ACAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC AAGAGAGACG
301 GCCG'TTA'TTA CTACGAATGC TATGGACTAC TGGGGTCAAG GAACCTCAGT
351 CACCGTCTCC TCAGCCAAAA CGACACCCCC ATCTGTCTAT CCACTGGCCC
401 CTGGATCTGC TGCCCAAACT AACTCCATGG TGACCCTGGG ATGCCTGGTC
451 AAGGGCTATT TCCCTGAGCC AGTGACAGTG ACCTGGAACT CTGGATCCCT
501 GTCCAGCGGT GTGCACACCT TCCCAGCTGT CCTGCAGTCT GACCTCTACA
551 CTCTGAGCAG CTCAGTGACT GTCCCCTCCA GCACCTGGCC CAGCGAGACC
601 GTCACCTGCA ACGTTGCCCA CCCGGCCAGC AGCACCAAGG TGGACAAGAA
651 AATTGTGCCC AGGGATTGTG GTTGTAAGCC TTGCATATGT ACAGTCCCAG
701 AAGTATCATC TGTCTTCATC TTCCCCCCAA AGCCCAAGGA TGTGCTCACC
751 ATTACTCTGA CTCCTAAGGT CACGTGTGTT GTGGTAGACA TCAGCAAGGA
801 TGATCCCGAG GTCCAGTTCA GCTGG fri ________________________________ UT
AGATGATGTG GAGGTGCACA
851 CAGCTCAGAC GCAACCCCGG GAGGAGCAGT TCAACAGCAC TTTCCGCTCA
901 GTCAGTGAAC TTCCCATCAT GCACCAGGAC TGGCTCAATG GCAAGGAGTT
951 CAAATGCAGG GTCAACAGTG CAGCTTTCCC TGCCCCCATC GAGAAAACCA
1001 TCTCCAAAAC CAAAGGCAGA CCGAAGGCTC CACAGGTGTA CACCATTCCA
1051 CCTCCCAAGG AGCAGATGGC CAAGGATAAA GTCAGTCTGA CCTGCATGAT
1101 AACAGACTTC TTCCCTGAAG ACATTACTGT GGAGTGGCAG TGGAATGGGC
1151 AGCCAGCGGA GAACTACAAG AACACTCAGC CCATCATGGA CACAGATGGC
1201 TCTTACTTCA TCTACAGCAA GCTCAATGTG CAGAAGAGCA ACTGGGAGGC
1251 AGGAAATACT TTCACCTGCT CTGTGTTACA TGAGGGCCTG CACAACCACC
1301 ATACTGAGAA GAGCCTCTCC CACTCTCCTG GTAAA (SEQ ID NO:210)
77

CA 02947080 2016-11-01
Amino acid sequence of the Ab-13 HC including signal peptide:
1 MGWNWIFLFL LSGTAGVYSE VQLQQSGPEL VKPGASVKMS CKASGYTFTD
51 YYMNWVKQSH GESLEWIGDI NPYNDDTTYN HKFKGKATLT VDKSSNTAYM
101 QLNSLTSEDS AVYYCARETA VITTNAMDYW GQGTSVTVSS AK'TTPPSVYP
151 LAPGSAAQTN SMVTLGCLVK GYFPEPVTVT WNSGSLSSGV HTFPAVLQSD
201 LYTLSSSVTV PSSTWPSETV TCNVAHPASS TKVDKKIVPR DCGCKPCICT
251 VPEVSSVFIF PPKPKDVLTI TLTPKVTCVV VDISKDDPEV QFSWFVDDVE
301 VHTAQTQPRE EQFNSTFRSV SELPIMHQDW LNGKEFKCRV NSAAFPAPIE
351 KTISKTKGRP KAPQVYTIPP PKEQMAKDKV SLTCMITDFF PEDITVEWQW
401 NGQPAENYKN TQPIMDTDGS YFIYSKLNVQ KSNWEAGNTF TCSVLHEGLH
451 NHHTEKSLSH SPGK (SEQ ID NO:211)
Nucleic acid sequence of the Ab-13 HC including signal peptide encoding
sequence:
1 ATGGGATGGA ACTGGATCTT TCTCTTCCTC TTGTCAGGAA CTGCAGGTGT
51 CTACTCTGAG GTCCAGCTGC AACAATCTGG ACCTGAGCTG GTGAAGCCTG
101 GGGCTTCAGT GAAGATGTCC TGTAAGGCTT CTGGATACAC ATTCACTGAC
151 TACTACATGA ACTGGGTGAA GCAGAGCCAT GGAGAGAGCC TTGAGTGGAT
201 TGGAGATATT AATCCTTACA ACGATGATAC TACCTACAAC CACAAGTTCA
251 AGGGCAAGGC CACA'TTGACT GTAGACAAAT CCTCCAACAC AGCCTACATG
301 CAGCTCAACA GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG
351 AGAGACGGCC GTTATTACTA CGAATGCTAT GGACTACTGG GGTCAAGGAA
401 CCTCAGTCAC CGTCTCCTCA GCCAAAACGA CACCCCCATC TGTCTATCCA
451 CTGGCCCCTG GATCTGCTGC CCAAACTAAC TCCATGGTGA CCCTGGGATG
501 CCTGGTCAAG GGCTAT'TTCC CTGAGCCAGT GACAGTGACC TGGAACTCTG
551 GATCCCTGTC CAGCGGTGTG CACACCTTCC CAGCTGTCCT GCAGTCTGAC
601 CTCTACACTC TGAGCAGCTC AGTGACTGTC CCCTCCAGCA CCTGGCCCAG
651 CGAGACCGTC ACCTGCAACG TTGCCCACCC GGCCAGCAGC ACCAAGGTGG
701 ACAAGAAAAT TGTGCCCAGG GATTGTGGTT GTAAGCCTTG CATATGTACA
751 GTCCCAGAAG TATCATCTGT CTTCATCTTC CCCCCAAAGC CCAAGGATGT
801 GCTCACCATT ACTCTGACTC CTAAGGTCAC GTGTG'TTGTG GTAGACATCA
851 GCAAGGATGA TCCCGAGGTC CAGTTCAGCT GGTTTGTAGA TGATGTGGAG
901 GTGCACACAG CTCAGACGCA ACCCCGGGAG GAGCAGTTCA ACAGCACTTT
951 CCGCTCAGTC AGTGAACTTC CCATCATGCA CCAGGACTGG CTCAATGGCA
1001 AGGAGTTCAA ATGCAGGGTC AACAGTGCAG CTTTCCCTGC CCCCATCGAG
1051 AAAACCATCT CCAAAACCAA AGGCAGACCG AAGGCTCCAC AGGTGTACAC
1101 CATTCCACCT CCCAAGGAGC AGATGGCCAA GGATAAAGTC AGTCTGACCT
1151 GCATGATAAC AGACTTCTTC CCTGAAGACA TTACTGTGGA GTGGCAGTGG
1201 AATGGGCAGC CAGCGGAGAA CTACAAGAAC ACTCAGCCCA TCATGGACAC
1251 AGATGGCTCT TACTTCATCT ACAGCAAGCT CAATGTGCAG AAGAGCAACT
1301 GGGAGGCAGG AAATACTTTC ACCTGCTCTG TGTTACATGA GGGCCTGCAC
1351 AACCACCATA CTGAGAAGAG CCTCTCCCAC TCTCCTGGTA AA (SEQ ID
NO:212)
Ab-13 was humanized to generate Ab-14.
The sequences of the Antibody 14 (also referred to herein as Ab-14) LC and HC
are as follows:
78

CA 02947080 2016-11-01
Ab-I4
Amino acid sequence of the mature form (signal peptide removed) of the Ab-14
LC:
1 DIQLTQSPSF LSASVGDRVT ITCRASSSVT SSYLNWYQQK PGKAPKLLIY
51 STSNLASGVP SRFSGSGSGT EFTLTISSLQ PEDFATYYCQ QYDFFPSTFG
101 GOTK-VEIKRT VAAPSVFIFP PSDEQLKSGT ASVVCLLNNF fPREAKVQWK
151 VDNALQSGNS QESVTEQDSK DSTYSLSSTL TLSKADYEKH KVYACEVTHQ
201 GLSSPVTKSF NRGEC (SEQ ID NO:213)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-14 LC:
1 GACATCCAGC TGACCCAGAG CCCCAGCTTC CTTTCCGCAT CCGTTGGTGA
51 CCGAGTAACA ATCACATGCC GCGCCTCATC TTCAGTTACA TCTTCTTATC
101 TTAATTGGTA TCAACAAAAA CCAGGAAAAG CACCTAAACT TCTTATATAC
151 TCTACATCTA ATCTCGCATC AGGAGTTCCC TCTCGA ITI __________________ T
CAGGATCTGG
201 ATCAGGCACA GAA ____ ITIACAC TTACTATATC ATCACTCCAA CCAGAAGACT
251 TCGCCACTTA TTACTGCCAA CAATACGATT T=CCAAG CACATTCGGA
301 GGAGGTACAA AAGTAGAAAT CAAGCGTACG GTGGCTGCAC CATCTGTCTT
351 CATCTTCCCG CCATCTGATG AGCAGTTGAA ATCTGGAACT GCCTCTGTTG
401 TGTGCCTGCT GAATAACTTC TATCCCAGAG AGGCCAAAGT ACAGTGGAAG
451 GTGGATAACG CCCTCCAATC GGGTAACTCC CAGGAGAGTG TCACAGAGCA
501 GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG ACGCTGAGCA
551 AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT CACCCATCAG
601 GGCCTGAGCT CGCCCGTCAC AAAGAGCTTC AACAGGGGAG AGTGT (SEQ ID
NO:214)
Amino acid sequence of the Ab-14 LC including signal peptide:
1 MDMRVPAQLL GLLLLWLPGA RCDIQLTQSP SFLSASVGDR VTITCRASSS
51 VTSSYLNWYQ QKPGKAPICLL IYSTSNLASG VPSRF'SGSGS GTEFTLTISS
101 LQPEDFATYY CQQYDFFPST FGGGTKVEIK RTVAAPSVFI FPPSDEQLKS
151 GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS
201 TLTLSKADYE KEKVYACEVT HQGLSSPVTK SFNRGEC (SEQ ID NO:215)
Nucleic acid sequence of the Ab-I4 LC including signal peptide encoding
sequence:
1 ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTGC TACTCTGGCT
51 CCCAGGTGCC AGATGTGACA TCCAGCTGAC CCAGAGCCCC AGCTTCCTTT
101 CCGCATCCGT TGGTGACCGA GTAACAATCA CATGCCGCGC CTCATCTTCA
151 GTTACATC'TT CTTATCTTAA TTGGTATCAA CAAAAACCAG GAAAAGCACC
201 TAAACTTCTT ATATACTCTA CATCTAATCT CGCATCAGGA GTTCCCTCTC
251 GATTTTCAGG ATCTGGATCA GGCACAGAAT TTACACTTAC TATATCATCA
301 CTCCAACCAG AAGACTTCGC CACTTATTAC TGCCAACAAT ACGATTTITT
351 TCCAAGCACA TTCGGAGGAG GTACAAAAGT AGAAATCAAG CGTACGGTGG
401 CTGCACCATC TGTCTTCATC TTCCCGCCAT CTGATGAGCA GTTGAAATCT
451 GGAACTGCCT CTGTT'GTGTG CCTGCTGAAT AACTTCTATC CCAGAGAGGC
501 CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG
551 AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC
601 ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG
651 CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA
701 GGGGAGAGTG T (SEQ ID NO:216)
79

CA 02947080 2016-11-01
Ab-14 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-14
HC:
1 EVQLVQSGAE VKKPGASVKV SCKASGY'TFT DYYMN)VVRQA PGQRLEWMGD
51 INPYNDDTTY NIIKFK6RVTI TRDTSASTAY MELSSLRSED TAVYYCARET,
101 AVITTNAMDY WGQGTTVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
151 KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSNFGTQ
201 TYTCNVDHKP SNTKVDKTVE RKCCVECPPC PAPPVAGPSV FLFPPKPKDT
251 LMISRTPEVT CVVVDVSHED PEVQFNWYVD GVEVHNAKTK PREEQFNSTF
301 RVVSVLTVVH QDWLNGKEYK CKVSNKGLPA PIEKTISKTK GQPREPQVYT
351 LPPSREEMTK NQVSLTCLVK GFYPSDL4VE WESNGQPENN YKTTPPMLDS
401 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK (SEQ ID
NO:217)
Amino acid sequence of the mature form (signal peptide removed) of the Ab-14
HC without
carboxy-terminal lysine:
1 EVQLVQSGAE VKKPGASVKV SCKASGYTFT bYY141WVRQA PGQRLEWMGD
51 INPYNI5DTTY NFIK:FIcGRVTI TRDTSASTAY MELSSLRSED TAVYYCARET
101 ,AVITTNAMDY WGQG'ITVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
151 KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSNFGTQ
201 TYTCNVDHKP SNTKVDKTVE RKCCVECPPC PAPPVAGPSV FLFPPKPKDT
251 LMISRTPEVT CVVVDVSHED PEVQFNWYVD GVEVHNAKTK PREEQFNSTF
301 RVVSVLTVVH QDWLNGKEYK CKVSNKGLPA PIEKTISKTK GQPREPQVYT
351 LPPSREEMTK NQVSLTCLVK GFYPSDL4VE WESNGQPENN YKTTPPMLDS
401 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG (SEQ
NO:393)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-14 HC:
1 GAGGTGCAGC TGGTGCAGAG CGGCGCCGAG GTCAAGAAAC CTGGAGCAAG
51 CGTAAAGGTT AGTTGCAAAG CATCTGGATA CACA'TTTACC GACTACTACA
101 TGAATTGGGT ACGACAAGCC CCTGGACAAA GACTTGAATG GATGGGAGAC
151 ATTAACCCTT ATAACGACGA CACTACATAC AATCATAAAT TTAAAGGAAG
201 AGTTACAATT ACAAGAGATA CATCCGCATC AACCGCCTAT ATGGAAC ____________ Fri
251 CCTCATTGAG ATCTGAAGAC ACTGCTGTTT ATTACTGTGC AAGAGAAACT
301 GCCGITATTA CTACTAACGC TATGGATTAC TGGGGTCAAG GAACCACTGT
351 TACCGTCTCT AGTGCCTCCA CCAAGGGCCC ATCGGTCTTC CCCCTGGCGC
401 CCTGCTCCAG GAGCACCTCC GAGAGCACAG CGGCCCTGGG CTGCCTGGTC
451 AAGGACTACT TCCCCGAACC GGTGACGGTG TCGTGGAACT CAGGCGCTCT
501 GACCAGCGGC GTGCACACCT TCCCAGCTGT CCTACAGTCC TCAGGACTCT
551 ACTCCCTCAG CAGCGTGGTG ACCGTGCCCT CCAGCAACTT CGGCACCCAG
601 ACCTACACCT GCAACGTAGA TCACAAGCCC AGCAACACCA AGGTGGACAA
651 GACAGTTGAG CGCAAATGTT GTGTCGAGTG CCCACCGTGC CCAGCACCAC
701 CTGTGGCAGG ACCGTCAGTC TTCCTCTTCC CCCCAAAACC CAAGGACACC
751 CTCATGATCT CCCGGACCCC TGAGGTCACG TGCGTGGTGG TGGACGTGAG
801 CCACGAAGAC CCCGAGGTCC AGTTCAACTG GTACGTGGAC GGCGTGGAGG
851 TGCATAATGC CAAGACAAAG CCACGGGAGG AGCAG'TTCAA CAGCACGTTC
901 CGTGTGGTCA GCGTCCTCAC CGTTGTGCAC CAGGACTGGC TGAACGGCAA
951 GGAGTACAAG TGCAAGGTCT CCAACAAAGG CCTCCCAGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC

CA 02947080 2016-11-01
1051 CTGCCCCeAfbCCGGGAGGA GATGACCAAG AACCAGGTCA GCCTGACCTG
1101 CCTGGTCAAA GGCTTCTACC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA
1151 ATGGGCAGCC GGAGAACAAC TACAAGACCA CACCTCCCAT GCTGGACTCC
1201 GACGGCTCCT TCTTCCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG
1251 GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA
1301 ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA A (SEQ ID
NO:218)
Amino acid sequence of the Ab-14 HC including signal peptide:
1 MDWTWRILFL VAAATGAHSE VQLVQSGAEV ICKPGASVKVS CKASGYTFTD
51 YYMNWVRQAP GQRLEWMGDI NPYNDDTTYN HKFKGRVTIT RDTSASTAYM
101 ELSSLRSEDT AVYYCARETA VITTNAMDYW GQGTTVTVSS ASTKGPSVFP
151 LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS
201 GLYSLSSVVT VPSSNFGTQT YTCNVDHKPS NTKVDKTVER KCCVECPPCP
251 APP VAGPSVF LFPPKPICDTL MISRTPEVTC VVVDVSHEDP EVQFNWYVDG
301 VEVHNAKTKP REEQFNSTFR VVSVLTVVHQ DWLNGKEYKC KVSNKGLPAP
351 IEKTISKTKG QPREPQVYTL PPSREEMTKN QVSLTCLVKG FYPSDIAVEW
401 ESNGQPENNY KTTPPIVELDSD GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA
451 LHNHYTQKSL SLSPGK (SEQ ID NO:219)
Nucleic acid sequence of the Ab-14 HC including signal peptide encoding
sequence:
1 ATGGACTGGA CCTGGAGGAT CCTCTTCTTG GTGGCAGCAG CCACAGGAGC
51 CCACTCCGAG GTGCAGCTGG TGCAGAGCGG CGCCGAGGTC AAGAAACCTG
101 GAGCAAGCGT AAAGGTTAGT TGCAAAGCAT CTGGATACAC ATTTACCGAC
151 TACTACATGA ATTGGGTACG ACAAGCCCCT GGACAAAGAC 'TTGAATGGAT
201 GGGAGACATT AACCCTTATA ACGACGACAC TACATACAAT CATAAATTTA
251 AAGGAAGAGT TACAATTACA AGAGATACAT CCGCATCAAC CGCCTATATG
301 GAACTTTCCT CATTGAGATC TGAAGACACT GCTGTTTATT ACTGTGCAAG
351 AGAAACTGCC GTTATTACTA CTAACGCTAT GGATTACTGG GGTCAAGGAA
401 CCACTGTTAC CGTCTCTAGT GCCTCCACCA AGGGCCCATC GGTCTTCCCC
451 CTGGCGCCCT GCTCCAGGAG CACCTCCGAG AGCACAGCGG CCCTGGGCTG
501 CCTGGTCAAG GACTACTTCC CCGAACCGGT GACGGTGTCG TGGAACTCAG
551 GCGCTCTGAC CAGCGGCGTG CACACCTTCC CAGCTGTCCT ACAGTCCTCA
601 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAACTTCGG
651 CACCCAGACC TACACCTGCA ACGTAGATCA CAAGCCCAGC AACACCAAGG
701 TGGACAAGAC AGTTGAGCGC AAATGTTGTG TCGAGTGCCC ACCGTGCCCA
751 GCACCACCTG TGGCAGGACC GTCAGTCTTC CTCTTCCCCC CAAAACCCAA
801 GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACGTGC GTGGTGGTGG
851 ACGTGAGCCA CGAAGACCCC GAGGTCCAGT TCAACTGGTA CGTGGACGGC
901 GTGGAGGTGC ATAATGCCAA GACAAAGCCA CGGGAGGAGC AGTTCAACAG
951 CACGTTCCGT GTGGTCAGCG TCCTCACCGT TGTGCACCAG GACTGGCTGA
1001 ACGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGGCCT CCCAGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGG CAGCCCCGAG AACCACAGGT
1101 GTACACCCTG CCCCCATCCC GGGAGGAGAT GACCAAGAAC CAGGTCAGCC
1151 TGACCTGCCT GGTCAAAGGC TTCTACCCCA GCGACATCGC CGTGGAGTGG
1201 GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACAC CTCCCATGCT
1251 GGACTCCGAC GGCTCCTTCT TCCTCTACAG CAAGCTCACC GTGGACAAGA
1301 GCAGGTGGCA GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT GCATGAGGCT
1351 CTGCACAACC ACTACACGCA GAAGAGCCTC TCCCTGTCTC CGGGTAAA
81

CA 02947080 2016-11-01
(SEQ ID NO:220) "
The CDR sequences in the variable region of the heavy chain of Ab-14 are:
CDR-H1: DYYMN (SEQ ID NO:296)
=
CDR-H2: DINPYNDDTTYNHKFKG (SEQ ID NO:297)
CDR-H3: ETAVITTNAMD (SEQ ID NO:298)
The light chain variable region CDR sequences of Ab-14 are:
CDR-Ll: RASSSVTSSYLN (SEQ ID NO:284)
CDR-L2: STSNLAS (SEQ ID NO:285)
CDR-L3: QQYDFFPST (SEQ ID NO:286)
Ab-14 Variable domains:
Ab-14 light chain variable domain amino acid sequence (without signal
sequence):
1 DIQLTQSPSF LSASVGDRVT ITCMSS8VT SSY.L2NWYQQK PGKAPKLLIY
51 STSNIASGVP SRFSGSGSGT EFTLTIS- LQ PEDFATYYCQ QYDFFPS'TFG
101 GGTKVEIK (SEQ ID NO:380)
Ab-14 light chain variable domain DNA sequence (without signal sequence):
1 GACATCCAGC TGACCCAGAG CCCCAGCTTC C 11-1CCGCAT CCGTTGGTGA
51 CCGAGTAACA ATCACATGCC GCGCCTCATC TTCAGTTACA TCTTCTTATC
101 TTAATTGGTA TCAACAAAAA CCAGGAAAAG CACCTAAACT TCTTATATAC
151 TCTACATCTA ATCTCGCATC AGGAGTTCCC TCTCGATTTT CAGGATCTGG
201 ATCAGGCACA GAATT'TACAC TTACTATATC ATCACTCCAA CCAGAAGACT
251 TCGCCACTTA TTACTGCCAA CAATACGATT ITIT1 CCAAG CACATTCGGA
301 GGAGGTACAA AAGTAGAAAT CAAG (SEQ ID NO:381)
Ab-14 heavy chain variable domain amino acid sequence (without signal
sequence):
1 EVQLVQSGAE VKKPGASVKV SCKASGYTFT IpyymNWVRQA PGQRLEWMGD,
51 INPYNDDTTY NEKFKGRVTI TRDTSASTAY MELSSLRSED TAVYYCARET
101 AVITTNAMDY WGQGTTVTVS S (SEQ ID NO 382)
Ab-14 heavy chain variable domain DNA sequence (without signal sequence):
1 GAGGTGCAGC TGGTGCAGAG CGGCGCCGAG GTCAAGAAAC CTGGAGCAAG
51 CGTAAAGGTT' AGTTGCAAAG CATCTGGATA CACA'TTTACC GACTACTACA
101 TGAATTGGGT ACGACAAGCC CCTGGACAAA GACTTGAATG GATGGGAGAC
151 ATTAACCCTT ATAACGACGA CACTACATAC AATCATAAAT TTAAAGGAAG
201 AG'TTACAATT ACAAGAGATA CATCCGCATC AACCGCCTAT ATGGAAC1-11
251 CCTCATTGAG ATCTGAAGAC ACTGCTGTTT ATTACTGTGC AAGAGAAACT
82

CA 02947080 2016-11-01
301 GCCGTTATTA CTACTAACGC TATGGATTAC TGGGGTCAAG GAACCACTGT
351 TACCGTCTCT AGT (SEQ ID NO:383)
Ab-3 was humanized to generate Ab-15.
Ab-15
The sequences of the Antibody 15 (also referred to herein as Ab-15) LC and HC
are as follows:
Ab-15 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-15
LC:
1 DIQMTQSPSS LSASVGDRVT ITC'SVSSTIS SNHLIIWFQQK PGICAPKSLIY
51 GTSNLASGVP SRFSGSGSGT DFTLTISSO i3EDFATYYCQ QWSSYPLTFG
101 GGTKVEIKRT VAAPSVFIFP PSDEQLKSGT ASVVCLLNNF YPREAKVQWK
151 VDNALQSGNS QESVTEQDSK DSTYSLSSTL TLSKADYEKH KVYACEVTHQ
201 GLSSPVTKSF NRGEC (SEQ ID NO:221)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-15 LC:
1 GACATCCAGA TGACCCAGTC TCCATCCTCC CTCTCAGCAT CCGTAGGCGA
51 TAGAGTTACA ATAACATGCA GCGTATCATC AACTATATCA TCAAATCATC
101 'TTCA'FTGGTT CCAACAGAAA CCCGGCAAAG CACCTAAATC ACTTATATAC
151 GGCACATCAA ATCTCGCATC AGGCGTTCCT TCAAGAT ______ m CAGGCTCTGG
201 CTCAGGCACC GACTTTACTC TTACAATATC CTCCCTCCAA CCCGAAGACT
251 TCGCAACCTA TTACTGTCAA CAATGGTCCT CATATCCACT CACATITGGC
301 GGCGGCACAA AAGTAGAAAT TAAACGTACG GTGGCTGCAC CATCTGTCTT
351 CATCTTCCCG CCATCTGATG AGCAGTTGAA ATCTGGAACT GCCTCTGTTG
401 TGTGCCTGCT GAATAACTTC TATCCCAGAG AGGCCAAAGT ACAGTGGAAG
451 GTGGATAACG CCCTCCAATC GGGTAACTCC CAGGAGAGTG TCACAGAGCA
501 GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG ACGCTGAGCA
551 AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT CACCCATCAG
601 GGCCTGAGCT CGCCCGTCAC AAAGAGCTTC AACAGGGGAG AGTGT (SEQ ID
NO:222)
Amino acid sequence of the Ab-15 LC including signal peptide:
1 MDMRVPAQLL GLLLLWLRGA RCDIQMTQSP SSLSASVGDR VTITCSVSST
51 ISSNHLHWFQ QKPGKAPKSL IYGTSNLASG VPSRFSGSGS GTDFTLTISS
101 LQPEDFATYY CQQWSSYPLT FGGGTKVEIK RTVAAPSVFI FPPSDEQLKS
151 GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS
201 TLTLSKADYE ICHKVYACEVT HQGLSSPVTK SFNRGEC (SEQ ID NO:223)
Nucleic acid sequence of the Ab-15 LC including signal peptide encoding
sequence:
1 ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTGC TACTCTGGCT
51 CCGAGGTGCC AGATGTGACA TCCAGATGAC CCAGTCTCCA TCCTCCCTCT
83

CA 02947080 2016-11-01
101 CAOCAIab't MGCGATAGA GTTACAATAA CATGCAGCGT ATCATCAACT
151 ATATCATCAA ATCATCTTCA TTGGTTCCAA CAGAAACCCG GCAAAGCACC
201 TAAATCAC'TT ATATACGGCA CATCAAATCT CGCATCAGGC GTTCCTTCAA
251 GATTTTCAGG CTCTGGCTCA GGCACCGACT 'TTACTCTTAC AATATCCTCC
301 CTCCAACCCG AAGACTTCGC AACCTATTAC TGTCAACAAT GGTCCTCATA
351 TCCACTCACA Tn. GGCGGCG GCACAAAAGT AGAAATTAAA CGTACGGTGG
401 CTGCACCATC TGTCTTCATC ITCCCGCCAT CTGATGAGCA GTTGAAATCT
451 GGAACTGCCT CTGTTGTGTG CCTGCTGAAT AAC'TTCTATC CCAGAGAGGC
501 CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG
551 AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC
601 ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG
651 CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA
701 GGGGAGAGTG T (SEQ ID NO:224)
Ab-15 Heavy Chain
Amino acid sequence of the mature form (signal peptide removed) of Ab-15 HC.
1 EVQLVQSGAE VKKPGASVKV SCKASDFNIK bF,11,0,WVRQA PGQGLEWIGR
51 IDPENGDTLY DPICF:015KVTM TTDTSTSTAY MECRSLRSDD TAVYYCARhA
101 DYTHIDGTSYlk,YFDVWGRGTL VTVSSASTKGPSVFPLAPCS RSTSESTAAL
151 OCLVKIjYFPE PVTVSWNSGA LTSGVHTFPA VLQSSGLYSL SSVVTVPSSN
201 FGTQTYTCNV DHKPSNTKVD KTVERKCCVE CPPCPAPPVA GPSVFLFPPK
251 PKDTLMISRT PEVTCVVVDVSHEDPEVQFN WYVDGVEVHN AKTKPREEQF
301 NSTFRVVSVL TVVHQDWLNG KEYKCKVSNK GLPAPIEKTI SKTKGQPREP
351 QVYTLPPSRE EMTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENN YKTTPP
401 MLDSDGSFFL YSKLTVDKSR WQQGNVFSCS VMHEALHNHY TQKSLSLSPG
451 K (SEQ ID NO:225)
Amino acid sequence of the mature form (signal peptide removed) of Ab-15 HC
without
carboxy-terminal lysine:
1 EVQLVQSGAE VKKPGASVKV SCKASDFNIK DFYLHWVRQA PGQGLEWIGk
51 IDPEN-GDItY DPKFQDKVTM TTDTSTSTAY MELRSLRSDD TAVYYCAREA
101 DYFEIDGTSYW YFDVWGRGTL VTVSSASTKG PSVFPLAPCS RSTSESTAAL
151 GCLVKDYFPE PVTVSWNSGA LTSGVHTFPA VLQSSGLYSL SSVVTVPSSN
201 FGTQTYTCNV DHKPSNTKVD KTVERKCCVE CPPCPAPPVA GPSVFLFPPK
251 PKDTLMISRT PEVTCVVVDV SHEDPEVQFN WYVDGVEVHN AKTKPREEQF
301 NSTFRVVSVL TVVHQDWLNG KEYKCKVSNK GLPAPIEKTI SKTKGQPREP
351 QVYTLPPSRE EMTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP
401 MLDSDGSFFL YSKLTVDKSR WQQG1VVFSCS VMHEALHNHY TQKYLSLSPG
451 (SEQ ID NO:394)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-15 HC:
1 GAGGTGCAGC TGGTGCAGTC TGGGGCTGAG GTGAAGAAGC CTGGGGCCTC
84

CA 02947080 2016-11-01
51 AGTGAAGGTC TCCTGCAAGG CTTCTGACTT CAACATT'AAA GACTTCTATC
101 TACACTGGGT GCGACAGGCC CCTGGACAAG GGCTTGAGTG GATTGGAAGG
151 ATTGATCCTG AGAATGGTGA TACITIATAT GACCCGAAGT TCCAGGACAA
201 GGTCACCATG ACCACAGACA CGTCCACCAG CACAGCCTAC ATGGAGCTGA
251 GGAGCCTGAG ATCTGACGAC ACGGCCGTGT ATTACTGTGC GAGAGAGGCG
301 GATTATTTCC ACGATGGTAC CTCCTACTGG TACTTCGATG TCTGGGGCCG
351 TGGCACCCTG GTCACCGTCT CTAGTGCCTC CACCAAGGGC CCATCGGTCT
401 TCCCCCTGGC GCCCTGCTCC AGGAGCACCT CCGAGAGCAC AGCGGCCCTG
451 GGCTGCCTGG TCAAGGACTA CTTCCCCGAA CCGGTGACGG TGTCGTGGAA
501 CTCAGGCGCT CTGACCAGCG GCGTGCACAC CTTCCCAGCT GTCCTACAGT
551 CCTCAGGACT CTACTCCCTC AGCAGCGTGG TGACCGTGCC CTCCAGCAAC
601 TTCGGCACCC AGACCTACAC CTGCAACGTA GATCACAAGC CCAGCAACAC
651 CAAGGTGGAC AAGACAGTTG AGCGCAAATG TTGTGTCGAG TGCCCACCGT
701 GCCCAGCACC ACCTGTGGCA GGACCGTCAG TCTTCCTCTT CCCCCCAAAA
751 CCCAAGGACA CCCTCATGAT CTCCCGGACC CCTGAGGTCA CGTGCGTGGT
801 GGTGGACGTG AGCCACGAAG ACCCCGAGGT CCAGTTCAAC TGGTACGTGG
851 ACGGCGTGGA GGTGCATAAT GCCAAGACAA AGCCACGGGA GGAGCAGTTC
901 AACAGCACGT TCCGTGTGGT CAGCGTCCTC ACCGTTGTGC ACCAGGACTG
951 GCTGAACGGC AAGGAGTACA AGTGCAAGGT CTCCAACAAA GGCCTCCCAG
1001 CCCCCATCGA GAAAACCATC TCCAAAACCA AAGGGCAGCC CCGAGAACCA
1051 CAGGTGTACA CCCTGCCCCC ATCCCGGGAG GAGATGACCA AGAACCAGGT
1101 CAGCCTGACC TGCCTGGTCA AAGGCTTCTA CCCCAGCGAC ATCGCCGTGG
1151 AGTGGGAGAG CAATGGGCAG CCGGAGAACA ACTACAAGAC CACACCTCCC
1201 ATGCTGGACT CCGACGGCTC CTTCTTCCTC TACAGCAAGC TCACCGTGGA
1251 CAAGAGCAGG TGGCAGCAGG GGAACGTCTT CTCATGCTCC GTGATGCATG
1301 AGGCTCTGCA CAACCACTAC ACGCAGAAGA GCCTCTCCCT GTCTCCGGGT
1351 AAA (SEQ ID NO:226)
Amino acid sequence of the Ab-15 HC including signal peptide:
1 MDWTWRILFL VAAATGAHSE VQLVQSGAEV KKPGASVKVS CKASDFNIKD
51 FYLHWVRQAP GQGLEWIGRI DPENGDTLYD PKFQDKVTMT TDTSTSTAYM
101 ELRSLRSDDT AVYYCAREAD YFHDGTSYWY FDVWGRGTLV TVSSASTKGP
151 SVFPLAPCSR STSESTAALG CLVKDYFPEP VTVSWNSGAL TSGVHTFPAV
201 LQSSGLYSLS SVVTVPSSNF GTQTYTCNVD HKPSNTKVDK TVERKCCVEC
251 PPCPAPPVAG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVQFNW
301 YVDGVEVHNA KTKPREEQFN STFRVVSVLT VVHQDWLNGK EYKCKVSNKG
351 LPAPIEKTIS KTKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI
401 AVEWESNGQP ENNYKTTPPM LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV
451 MHEALHNHYT QKSLSLSPGK (SEQ ID NO:227)
Nucleic acid sequence of the Ab-15 HC including signal peptide encoding
sequence:
1 ATGGACTGGA CCTGGAGGAT CCTCTTCTTG GTGGCAGCAG CCACAGGAGC
51 CCACTCCGAG GTGCAGCTGG TGCAGTCTGG GGCTGAGGTG AAGAAGCCTG
101 GGGCCTCAGT GAAGGTCTCC TGCAAGGCTT CTGACTTCAA CATTAAAGAC
151 TTCTATCTAC ACTGGGTGCG ACAGGCCCCT GGACAAGGGC TTGAGTGGAT
201 TGGAAGGATT GATCCTGAGA ATGGTGATAC ITI _____ ATATGAC CCGAAGTTCC
251 AGGACAAGGT CACCATGACC ACAGACACGT CCACCAGCAC AGCCTACATG
301 GAGCTGAGGA GCCTGAGATC TGACGACACG GCCGTGTATT ACTGTGCGAG

CA 02947080 2016-11-01
351 AGAGGCGGAT TATTTCCACG ATGGTACCTC CTACTGGTAC TTCGATGTCT
401 GGGGCCGTGG CACCCTGGTC ACCGTCTCTA GTGCCTCCAC CAAGGGCCCA
451 TCGGTCTTCC CCCTGGCGCC CTGCTCCAGG AGCACCTCCG AGAGCACAGC
501 GGCCCTGGGC TGCCTGGTCA AGGACTACTT CCCCGAACCG GTGACGGTGT
551 CGTGGAACTC AGGCGCTCTG ACCAGCGGCG TGCACACCTT CCCAGCTGTC
601 CTACAGTCCT CAGGACTCTA CTCCCTCAGC AGCGTGGTGA CCGTGCCCTC
651 CAGCAACTTC GGCACCCAGA CCTACACCTG CAACGTAGAT CACAAGCCCA
701 GCAACACCAA GGTGGACAAG ACAGTTGAGC GCAAATGTTG TGTCGAGTGC
751 CCACCGTGCC CAGCACCACC TGTGGCAGGA CCGTCAGTCT TCCTCTTCCC
801 CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT GAGGTCACGT
851 GCGTGGTGGT GGACGTGAGC CACGAAQACC CCGAGGTCCA GTTCAACTGG
901 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CACGGGAGGA
951 GCAGTTCAAC AGCACGTTCC GTGTGGTCAG CGTCCTCACC GTTGTGCACC
1001 AGGACTGGCT GAACGGCAAG GAGTACAAGT GCAAGGTCTC CAACAAAGGC
1051 CTCCCAGCCC CCATCGAGAA AACCATCTCC AAAACCAAAG GGCAGCCCCG
1101 AGAACCACAG GTGTACACCC TGCCCCCATC CCGGGAGGAG ATGACCAAGA
1151 ACCAGGTCAG CCTGACCTGC CTGGTCAAAG GCTTCTACCC CAGCGACATC
1201 GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC
1251 ACCTCCCATG CTGGACTCCG ACGGCTCCTT CTTCCTCTAC AGCAAGCTCA
1301 CCGTGGACAA GAGCAGGTGG CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG
1351 ATGCATGAGG CTCTGCACAA CCACTACACG CAGAAGAGCC TCTCCCTGTC
1401 TCCGGGTAAA (SEQ ID NO:228)
The CDR sequences in the variable region of the heavy chain of Ab-15 are:
CDR-H1: DFYLH (SEQ ID NO:290)
CDR-H2: RIDPENGDTLYDPKFQD (SEQ ID NO:291)
CDR-H3: EADYFHDGTSYWYFDV (SEQ ID NO:292)
The light chain variable region CDR sequences of Ab-15 are:
CDR-L1: SVSSTISSNHLH (SEQ ID NO:278)
CDR-L2: GTSNLAS (SEQ ID NO:279)
CDR-L3: QQWSSYPLT (SEQ ID NO:280)
Ab-15 Variable domains:
Ab-15 light chain variable domain amino acid sequence (without signal
sequence):
1 DIQMTQSPSS LSASVGDRVT ITCSVSSTIS SNHUINFQQK PGKAPKSLIY
51 GTSNLA'SGVP SRFSGSGSGT DFTLTISSLQ PEDFATYYCQ QWSSyPLTEG
101 GGTKVEIK (SEQ ID NO:384)
Ab-15 light chain variable domain DNA sequence (without signal sequence):
1 GACATCCAGA TGACCCAGTC TCCATCCTCC CTCTCAGCAT CCGTAGGCGA
51 TAGAGTTACA ATAACATGCA GCGTATCATC AACTATATCA TCAAATCATC
86

CA 02947080 2016-11-01
101 TTCATTGGTT CCAACAGAAA CCCGGCAAAG CACCTAAATC ACTTATATAC
151 GGCACATCAA ATCTCGCATC AGGCGTTCCT TCAAGATTTT CAGGCTCTGG
201 CTCAGGCACC GAC11 l'ACTC TTACAATATC CTCCCTCCAA CCCGAAGACT
251 TCGCAACCTA TTACTGTCAA CAATGGTCCT CATATCCACT CACATTTGGC
301 GGCGGCACAA AAGTAGAAAT TAAA (SEQ ID NO:385)
Ab-15 heavy chain variable domain amino acid sequence (without signal
sequence):
1 EVQLVQSGAE VKKPGASVKV SCKASDFNIKINYLHWVRQA PGQGLEWIGR:
51 IDPENGDTLY DPKFQDKVTM TTDTSTSTAY MELRSLRSDD TAVYYCAREA
101 DYFHDGTSYW YFDVWGRGTL VTVSS (SEQ ID NO:386)
Ab-15 heavy chain variable domain DNA sequence (without signal sequence):
1 GAGGTGCAGC TGGTGCAGTC TGGGGCTGAG GTGAAGAAGC CTGGGGCCTC
51 AGTGAAGGTC TCCTGCAAGG CTTCTGACTT CAACATTAAA GACTTCTATC
101 TACACTGGGT GCGACAGGCC CCTGGACAAG GGCTTGAGTG GA'TTGGAAGG
151 ATTGATCCTG AGAATGGTGA TACTTTATAT GACCCGAAGT TCCAGGACAA
201 GGTCACCATG ACCACAGACA CGTCCACCAG CACAGCCTAC ATGGAGCTGA
251 GGAGCCTGAG ATCTGACGAC ACGGCCGTGT ATTACTGTGC GAGAGAGGCG
301 GATTATTTCC ACGATGGTAC CTCCTACTGG TACTTCGATG TCTGGGGCCG
351 TGGCACCCTG GTCACCGTCT CTAGT (SEQ ID NO:387)
Ab-11 was humanized to generate Ab-16.
Ab-16
The sequences of the Antibody 16 (also referred to herein as Ab-16) LC and HC
are as follows:
Ab-16 Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-16
LC:
1 DIQLTQSPSF LSASVGDRVT ITCRASSS'IS"'YIHWYQQKPG KAPKLLIYAT
51 SAASGVPSR FSGSGSGTEF TLTISSLQPE DFATYYCQQW SSbPLT,FGGG
101 TKVEIKR TVA APSVFIFPPS DEQLKSGTAS VVCLL1VNFYP REAKVQWKVD
151 NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKRKV YACEVTHQGL
201 SSPVTKSFNR GEC (SEQ ID NO:229)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-16 LC:
1 GACATCCAGT TGACCCAGTC TCCATCCTTC CTGTCTGCAT CTGTAGGAGA
51 CAGAGTCACC ATCACTTGCA GGGCCAGCTC AAGTATAAGT TACATACACT
101 GGTATCAGCA AAAACCAGGG AAAGCCCCTA AGCTCCTGAT CTATGCCACA
151 TCCAACCTGG CTTCTGGGGT CCCATCAAGG TTCAGCGGCA GTGGATCTGG
201 GACAGAAITC ACTCTCACAA TCAGCAGCCT GCAGCCTGAA GATTTTGCAA
251 CTTATTACTG TCAGCAGTGG AGTAGTGACC CACTCACGTT CGGCGGAGGG
301 ACCAAGGTGG AGATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT
351 CCCGCCATCT GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC
87

CA 02947080 2016-11-01
401 TGCTGAATAA CTTCTATCCC AGAGAGGCCA AAGTACAGTG GAAGGTGGAT
451 AACGCCCTCC AATCGGGTAA CTCCCAGGAG AGTGTCACAG AGCAGGACAG
501 CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG AGCAAAGCAG
551 ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG
601 AGCTCGCCCG TCACAAAGAG C'TTCAACAGG GGAGAGTGT (SEQ ID NO:230)
Amino acid sequence of the Ab-16 LC including signal peptide:
1 MDMRVPAQLL GLLLLWLPGA RCDIQLTQSP SFLSASVGDR VTITCRASSS
51 ISYIHWYQQK PGKAPKLLIY ATSNLASGVP SRF'SGSGSGT EFTLTISSLQ
101 PEDFAT'YYCQ QWSSDPLTFG GGTKVEIKRT VAAPSVFIFP PSDEQLKSGT
151 ASVVCLLNNF YPREAKVQWK VDNALQSGNS QESVTEQDSK DSTYSLSSTL
201 TLSKADYEKH KVYACEVTHQ GLSSPVTKSF NRGEC (SEQ ID NO:231)
Nucleic acid sequence of the Ab-16 LC including signal peptide encoding
sequence:
1 ATGGACATGA GGGTCCCCGC TCAGCTCCTG GGGCTCCTGC TGCTCTGGCT
51 CCCAGGTGCC AGATGTGACA TCCAGTT'GAC CCAGTCTCCA TCCTTCCTGT
101 CTGCATCTGT AGGAGACAGA GTCACCATCA CTTGCAGGGC CAGCTCAAGT
151 ATAAGTTACA TACACTGGTA TCAGCAAAAA CCAGGGAAAG CCCCTAAGCT
201 CCTGATCTAT GCCACATCCA ACCTGGCTTC TGGGGTCCCA TCAAGGTTCA
251 GCGGCAGTGG ATCTGGGACA GAATTCACTC TCACAATCAG CAGCCTGCAG
301 CCTGAAGATT TTGCAACTTA TTACTGTCAG CAGTGGAGTA GTGACCCACT
351 CACGTTCGGC GGAGGGACCA AGGTGGAGAT CAAACGTACG GTGGCTGCAC
401 CATCTGTCTT CATCTTCCCG CCATCTGATG AGCAGTTGAA ATCTGGAACT
451 GCCTCTGTTG TGTGCCTGCT GAATAACTTC TATCCCAGAG AGGCCAAAGT
501 ACAGTGGAAG GTGGATAACG CCCTCCAATC GGGTAACTCC CAGGAGAGTG
551 TCACAGAGCA GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG
601 ACGCTGAGCA AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT
651 CACCCATCAG GGCCTGAGCT CGCCCGTCAC AAAGAGCTT'C AACAGGGGAG
701 AGTGT (SEQ ID NO:232)
Ab-16 Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-16
HC:
1 EVQLVQSGAE VKKPGASVKV SCKASGFDIKIWYTHWVRQA PGQGLEWIGR
51 VDPDNGETEF`APKFPOKVTM TTDTSISTAY MELSRLRSDD TAVYYCARE1D
101 'YDGTYTWFPY WGQGTLVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
151-KDYFPEPVTVSWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSNFGTQ
201 TYTCNVDHKP SNTKVDKTVE RKCCVECPPC PAPPVAGPSV FLFPPKPKDT
251 LMISRTPEVT CVVVDVSHED PEVQFNWYVD GVEVHNAKTK PREEQFNSTF
301 RVVSVLTVVH QDWLNGKEYK CKVSNKGLPA PIEKTISKTK GQPREPQVYT
351 LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPMLDS
88

CA 02947080 2016-11-01
401 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK (SEQ ID
NO:233)
Amino acid sequence of the mature form (signal peptide removed) of the Ab-16
HC without
carboxy-terminal lysine:
1 EVQLVQSGAE VI(KPGASVKV SCKASGFDLI(D¨YY- LIOVRQA PGQGLEWIGR
51 VDPDNGETEF APKFPOICVTM TTDTSISTAY MELSRLRSDD TAVYYCAKED
101 YDGTYTWFPY WGQGTLVTVS SASTKGPSVF PLAPCSRSTS ESTAALGCLV
151'KDY¨FPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSNFGTQ
201 TYTCNVDHKP SNTKVDKTVE RKCCVECPPC PAPPVAGPSV FLFPPKPKDT
251 LMISRTPEVT CVVVDVSHED PEVQFNWYVD GVEVHNAKTK PREEQFNSTF
301 RVVSVLTVVH QDWLNGKEYK CKVSNKGLPA PIEKTISKTK GQPREPQVYT
351 LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPMLDS
401 DGSFFLYSKL TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPG (SEQ ID
NO:395)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-16 HC:
1 GAGGTGCAGC TGGTGCAGTC TGGGGCTGAG GTGAAGAAGO CTGGGGCCTC
51 AGTGAAGGTC TCCTGCAAGG CTTCTGGATT CGACATTAAG GACTACTATA
101 TACACTGGGT GCGACAGGCC CCTGGACAAG GGCTTGAGTG GATCGGAAGG
151 GTTGATCCTG ACAATGGTGA GACTGAATTT GCCCCGAAGT TCCCGGGCAA
201 GGTCACCATG ACCACAGACA CGTCCATCAG CACAGCCTAC ATGGAGCTGA
251 GCAGGCTGAG ATCTGACGAC ACGGCCGTGT ATTACTGTGC GAGAGAAGAC
301 TACGATGGTA CCTACACCTG GITICCTITAT TGGGGCCAAG GGACTCTGGT
351 CACCGTCTCT AGTGCCTCCA CCAAGGGCCC ATCGGTCTTC CCCCTGGCGC
401 CCTGCTCCAG GAGCACCTCC GAGAGCACAG CGGCCCTGGG CTGCCTGGTC
451 AAGGACTACT TCCCCGAACC GGTGACGGTG TCGTGGAACT CAGGCGCTCT
501 GACCAGCGGC GTGCACACCT TCCCAGCTGT CCTACAGTCC TCAGGACTCT
551 ACTCCCTCAG CAGCGTGGTG ACCGTGCCCT CCAGCAACTT CGGCACCCAG
601 ACCTACACCT GCAACGTAGA TCACAAGCCC AGCAACACCA AGGTGGACAA
651 GACAGTTGAG CGCAAATGTT GTGTCGAGTG CCCACCGTGC CCAGCACCAC
701 CTGTGGCAGG ACCGTCAGTC ITCCTCTTCC CCCCAAAACC CAAGGACACC
751 CTCATGATCT CCCGGACCCC TGAGGTCACG TGCGTGGTGG TGGACGTGAG
801 CCACGAAGAC CCCGAGGTCC AGTTCAACTG GTACGTGGAC GGCGTGGAGG
851 TGCATAATGC CAAGACAAAG CCACGGGAGG AGCAGTTCAA CAGCACGTTC
901 CGTGTGGTCA GCGTCCTCAC CGTTGTGCAC CAGGACTGGC TGAACGGCAA
951 GGAGTACAAG TGCAAGGTCT CCAACAAAGG CCTCCCAGCC CCCATCGAGA
1001 AAACCATCTC CAAAACCAAA GGGCAGCCCC GAGAACCACA GGTGTACACC
1051 CTGCCCCCAT CCCGGGAGGA GATGACCAAG AACCAGGTCA GCCTGACCTG
1101 CCTGGTCAAA GGCTTCTACC CCAGCGACAT CGCCGTGGAG TGGGAGAGCA
1151 ATGGGCAGCC GGAGAACAAC TACAAGACCA CACCTCCCAT GCTGGACTCC
1201 GACGGCTCCT TCTI'CCTCTA CAGCAAGCTC ACCGTGGACA AGAGCAGGTG
1251 GCAGCAGGGG AACGTCTTCT CATGCTCCGT GATGCATGAG GCTCTGCACA
1301 ACCACTACAC GCAGAAGAGC CTCTCCCTGT CTCCGGGTAA A (SEQ ID
NO:234)
Amino acid sequence of the Ab-16 HC including signal peptide:
89

CA 02947080 2016-11-01
1 MDWTWRILFL VAAATGAHSE VQLVQSGAEV KKPGASVKVS CKASGFDIKD
51 YYIHWVRQAP GQGLEWIGRV DPDNGETEFA PKFPGKVTMT TDTSISTAYM
101 ELSRLRSDDT AVYYCAREDY DGTYTWFPYW GQGTLVTVSS ASTKGPSVFP
151 LAPCSRSTSE STAALGCLVK DYFPEPVTVS WNSGALTSGV HTFPAVLQSS
201 GLYSLSSVVT VPSSNFGTQT YTCNVDHKPS NTKVDKTVER KCCVECPPCP
251 APPVAGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVQFNWYVDG
301 VEVHNAKTKP REEQFNSTFR VVSVLTVVHQ DWLNGKEYKC KVSNKGLPAP
351 IEKTISKTKG QPREPQVYTL PPSREEMTKN QVSLTCLVKG FYPSDIAVEW
401 ESNGQPENNY KTTPPMLDSD GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA
451 LHNHYTQKSL SLSPGK (SEQ ID NO:235)
Nucleic acid sequence of the Ab-16 HC including signal peptide encoding
sequence:
1 ATGGACTGGA CCTGGAGGAT CCTCTTCTTG GTGGCAGCAG CCACAGGAGC
51 CCACTCCGAG GTGCAGCTGG TGCAGTCTGG GGCTGAGGTG AAGAAGCCTG
101 GGGCCTCAGT GAAGGTCTCC TGCAAGGCTT CTGGATTCGA CATTAAGGAC
151 TACTATATAC ACTGGGTGCG ACAGGCCCCT GGACAAGGGC TTGAGTGGAT
201 CGGAAGGGTT GATCCTGACA ATGGTGAGAC TGAATTTGCC CCGAAGTTCC
251 CGGGCAAGGT CACCATGACC ACAGACACGT CCATCAGCAC AGCCTACATG
301 GAGCTGAGCA GGCTGAGATC TGACGACACG GCCGTGTATT ACTGTGCGAG
351 AGAAGACTAC GATGGTACCT ACACCTGGTT TCCTTATTGG GGCCAAGGGA
401 CTCTGGTCAC CGTCTCTAGT GCCTCCACCA AGGGCCCATC GGTCTTCCCC
451 CTGGCGCCCT GCTCCAGGAG CACCTCCGAG AGCACAGCGG CCCTGGGCTG
501 CCTGGTCAAG GACTACTTCC CCGAACCGGT GACGGTGTCG TGGAACTCAG
551 GCGCTCTGAC CAGCGGCGTG CACACCTTCC CAGCTGTCCT ACAGTCCTCA
601 GGACTCTACT CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAACTTCGG
651 CACCCAGACC TACACCTGCA ACGTAGATCA CAAGCCCAGC AACACCAAGG
701 TGGACAAGAC AGTTGAGCGC AAATGTTGTG TCGAGTGCCC ACCGTGCCCA
751 GCACCACCTG TGGCAGGACC GTCAGTCTTC CTCTTCCCCC CAAAACCCAA
801 GGACACCCTC ATGATCTCCC GGACCCCTGA GGTCACGTGC GTGGTGGTGG
851 ACGTGAGCCA CGAAGACCCC GAGGTCCAGT TCAACTGGTA CGTGGACGGC
901 GTGGAGGTGC ATAATGCCAA GACAAAGCCA CGGGAGGAGC AGTTCAACAG
951 CACG'TTCCGT GTGGTCAGCG TCCTCACCGT TGTGCACCAG GACTGGCTGA
1001 ACGGCAAGGA GTACAAGTGC AAGGTCTCCA ACAAAGGCCT CCCAGCCCCC
1051 ATCGAGAAAA CCATCTCCAA AACCAAAGGG CAGCCCCGAG AACCACAGGT
1101 GTACACCCTG CCCCCATCCC GGGAGGAGAT GACCAAGAAC CAGGTCAGCC
1151 TGACCTGCCT GGTCAAAGGC TTCTACCCCA GCGACATCGC CGTGGAGTGG
1201 GAGAGCAATG GGCAGCCGGA GAACAACTAC AAGACCACAC CTCCCATGCT
1251 GGACTCCGAC GGCTCCTTCT TCCTCTACAG CAAGCTCACC GTGGACAAGA
1301 GCAGGTGGCA GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT GCATGAGGCT
1351 CTGCACAACC ACTACACGCA GAAGAGCCTC TCCCTGTCTC CGGGTAAA (SEQ
ID NO:236)
The CDR sequences in the variable region of the heavy chain of Ab-16 are:
CDR-H1: DYYIH (SEQ ID NO:293)
CDR-H2: RVDPDNGETEFAPKFPG (SEQ ID NO:294)
CDR-H3: EDYDGTYTWFPY (SEQ ID NO:295)

CA 02947080 2016-11-01
The lighechain variable region CDR sequences of Ab-16 are:
CDR-L1: RASSSISYM (SEQ ID NO:281)
CDR-L2: ATSNLAS (SEQ ID NO:282)
CDR-L3: QQWSSDPLT (SEQ ID NO:283)
Ab-16 Variable domains:
Ab-16 light chain variable domain amino acid sequence (without signal
sequence):
1 DIQLTQSPSF LSASVGDRVT ITCRASSSIS Y1HWYQQKPG KAPKLLIYAT
51 SAASGVPSR FSGSGSGTEF TLTISSLQPE DFATYYCQQW SSDPLTFGGG
101 TKVEIK (SEQ ID NO:388)
Ab-16 light chain variable domain DNA sequence (without signal sequence):
1 GACATCCAGT TGACCCAGTC TCCATCCTTC CTGTCTGCAT CTGTAGGAGA
51 CAGAGTCACC ATCACTTGCA GGGCCAGCTC AAGTATAAGT TACATACACT
101 GGTATCAGCA AAAACCAGGG AAAGCCCCTA AGCTCCTGAT CTATGCCACA
151 TCCAACCTGG CTTCTGGGGT CCCATCAAGG TTCAGCGGCA GTGGATCTGG
201 GACAGAATTC ACTCTCACAA TCAGCAGCCT GCAGCCTGAA GATTTTGCAA
251 CTTATTACTG TCAGCAGTGG AGTAGTGACC CACTCACGTT CGGCGGAGGG
301 ACCAAGGTGG AGATCAAA (SEQ ID NO:389)
Ab-16 heavy chain variable domain amino acid sequence (without signal
sequence):
1 EVQLVQSGAE VKKPGASVKV SCKASGFDIKDWWWVRQA PGQGLEWIGR.
51 y6PDNGETEF APICFPOKVTM TTDTSISTAY IVIEESRLRSDD TAVYYCARED
101 YIDGTisi.:1WF'ErY. W6QGTLVTVS S (SEQ ID NO:390)
Ab-16 heavy chain variable domain DNA sequence (without signal sequence):
1 GAGGTGCAGC TGGTGCAGTC TGGGGCTGAG GTGAAGAAGC CTGGGGCCTC
51 AGTGAAGGTC TCCTGCAAGG CTTCTGGATT CGACATTAAG GACTACTATA
101 TACACTGGGT GCGACAGGCC CCTGGACAAG GGCTTGAGTG GATCGGAAGG
151 GTTGATCCTG ACAATGGTGA GACTGAA1'1'1 GCCCCGAAGT TCCCGGGCAA
201 GGTCACCATG ACCACAGACA CGTCCATCAG CACAGCCTAC ATGGAGCTGA
251 GCAGGCTGAG ATCTGACGAC ACGGCCGTGT ATTACTGTGC GAGAGAAGAC
301 TACGATGGTA CCTACACCTG GTTTCCTTAT TGGGGCCAAG GGACTCTGGT
351 CACCGTCTCT AGT (SEQ ID NO:391)
Additional antibodies are referred to herein as Antibodies 17-22 (also
referred to
herein as Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, and Ab-22). The Kappa Constant
region for all
VK regions of Ab-17, Ab-19, and Ab-21 is as follows:
TDAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVLNSWTDQD
SKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC (SEQ ID NO:323)
91

CA 02947080 2016-11-01
ihe Heavy Constant Region for all VH regions of antibodies 17, 19 and 21 is as
follows:
AKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVTVTWNSGSLSSGVHTFPAVLQS
DLYTLSSSVTVPSSTWPSETVTCNVAHPASSTKVDKICIVPRDCGCKPCICTVPEVSSVFIF
PPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSTFRS
VSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKD
KVSLTCMITDFFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEA
GNTFTCSVLHEGLHNHHTEKSLSHSPGK (SEQ ID NO:324)
In the following antibody amino acid sequences, the boxed-shaded amino acids
represent complement-determining regions (CDRs) and the underlined amino acids
represent
signal peptide.
Ab-17
Amino acid sequence of the Ab-17 LC including signal peptide:
MDFQVQIFSFMLISVTVILSSGEIVLTQSPALMAASPGEKVTITCS-VSSSISSSNLHWSQQK
SGTSPKLWIYOTSIkILASGVPVRFSGSGSGTSYSLTISSMEAEDAATCQQWTTYFIVG
SGTKLELKR (SEQ ID NO:299)
Nucleic acid sequence of the Ab-17 LC including signal peptide:
ATGGATTTTCAGGTGCAGATTTTCAGCTTCATGCTAATCAGTGTCACAGTCATATTG
TCCAGTGGAGAAATTGTGCTCACCCAGTCTCCAGCACTCATGGCTGCATCTCCAGGG
GAGAAGGTCACCATCACCTGCAGTGTCAGCTCGAGTATAAGTTCCAGCAACTTACA
CTGGTCCCAGCAGAAGTCAGGAACCTCCCCCAAACTCTGGATTTATGGCACATCCA
ACCTTGCTTCTGGAGTCCCTGTTCGCTTCAGTGGCAGTGGATCTGGGACCTCTTATTC
TCTCACAATCAGCAGCATGGAGGCTGAAGATGCTGCCACTTATTACTGTCAACAGT
GGACTACTACGTATACGTTCGGATCGGGGACCAAGCTGGAGCTGAAACGT (SEQ ID
NO:300)
Amino acid sequence of the Ab-17 HC including signal peptide:
MGWNWIIFFLMAVVTGVNSEVQLRQSGADLVKPGASVKLSCTASGFNIKDYVIHWVK
QRPEQGLEWIGIUDPDNGESIAYVPKEQGKATITADTSSNTAYLQLRSLTSEDTAIYYCGR
tGrLDY615Y.A.VDYWGQGTSVTVSS (SEQ ID NO:301)
Nucleic acid sequence of the Ab-17 HC including signal peptide:
ATGGGATGGAACTGGATCATCTTCTTCCTGATGGCAGTGGTTACAGGGGTCAATTCA
GAGGTGCAGTTGCGGCAGTCTGGGGCAGACCTTGTGAAGCCAGGGGCCTCAGTCAA
GTTGTCCTGCACAGCTTCTGGCTTCAACATTAAAGACTACTATATACACTGGGTGAA
GCAGAGGCCTGAACAGGGCCTGGAGTGGA'TTGGAAGGATTGATCCTGATAATGGTG
AAAGTACATATGICCCGAAGTTCCAGGGCAAGGCCACTATAACAGCAGACACATCA
TCCAACACAGCCTACCTACAACTCAGAAGCCTGACATCTGAGGACACTGCCATCTA
92

CA 02947080 2016-11-01
TTATTOTOWMAMGGGGCTCGACTATGGTGACTACTATGCTGIGGACTACTGGG
GTCAAGGAACCTCGGTCACAGTCTCGAGC (SEQ ID NO:302)
Ab-17 was humanized to generate Ab-18.
Ab-18
Amino acid sequence of the Ab-18 LC including signal peptide:
MDMRVPAQLLGLLLLWLPGARCDIQLTQSPSFLSASVGDRVTITCSVSSSISSSNLHWYQ
QKPGKAPKLLTYGTSNLASGVPSRFSGSGSGTEFTLTISSLQPEDFAtYNICQQW1'1"02TF
GQGTKLEIKR (SEQ ID NO:303)
Nucleic acid sequence of the Ab-18 LC including signal peptide:
ATGGATATGCGCGTGCCGGCGCAGCTGCTGGGCCTGCTGCTGCTGTGGCTGCCGGG
CGCGCGCTGCGATATTCAGCTGACCCAGAGCCCGAGCT'TTCTGAGCGCGAGCGTGG
GCGATCGCGTGACCATTACCTGCAGCGTGAGCAGCAGCATTAGCAGCAGCAACCTG
CATTGGTATCAGCAGAAACCGGGCAAAGCGCCGAAACTGCTGA f _______________________
11ATGGCACCAG
CAACCTGGCGAGCGGCGTGCCGAGCCGCTTTAGCGGCAGCGGCAGCGGCACCGAAT
TTACCCTGACCATTAGCAGCCTGCAGCCGGAAGATTTTGCGACCTATTATT'GCCAGC
AGTGGACCACCACCTATACCTTTGGCCAGGGCACCAAACTGGAAATTAAACGT (SEQ
ID NO:304)
Amino acid sequence of the Ab-18 HC including signal peptide:
MDWTWSILFLVAAPTGAHSEVQLVQSGAEVKKPGASVKVSCKASGFNIKDYYTHWVR
QAPGQGLEWMWDPDNGESTYVPKGAVTMTTDTSTSTAYMELRSLRSDDTAVYY
CAREGLI5YGDY-YAVDYWGQGTLVTVSS (SEQ ID NO:305)
Nucleic acid sequence of the Ab-18 HC including signal peptide:
ATGGATTGGACCTGGAGCAT'TCTG'IT1CTGGTGGCGGCGCCGACCGGCGCGCATAG
CGAAGTGCAGCTGGTGCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTG
AAAGTGAGCTGCAAAGCGAGCGGC fri AACATTAAAGATTATTATATTCATTGGGT
GCGCCAGGCGCCGGGCCAGGGCCTGGAATGGATGGGCCGCATTGATCCGGATAACG
GCGAAAGCACCTATGTGCCGAAA ITI CAGGGCCGCGTGACCATGACCACCGATACC
AGCACCAGCACCGCGTATATGGAACTGCGCAGCCTGCGCAGCGATGATACCGCGGT
GTATTATTGCGCGCGCGAAGGCCTGGATTATGGCGATTATTATGCGGTGGATTATTG
GGGCCAGGGCACCCTGGTGACCGTCTCGAGC (SEQ ID NO:306)
Ab-18 light chain variable domain amino acid sequence (without signal
sequence):
DIQLTQSPSFLSASVGDRYTITCSVSSSISSSNLHWYQQKPGKAPKLLIYOTSNLASGVPS
RFSGSGSGTEFTLTISSLQPEDFATTkQQWTTTVITGQGTKLEIICR (SEQ ID NO:368)
93

CA 02947080 2016-11-01
Ab-18 light chain variable domain DNA sequence (without signal sequence):
GATATTCAGCTGACCCAGAGCCCGAGCTTTCTGAGCGCGAGCGTGGGCGATCGCGT
GACCATTACCTGCAGCGTGAGCAGCAGCATTAGCAGCAGCAACCTGCATTGGTATC
AGCAGAAACCGGGCAAAGCGCCGAAACTGCTGATTTATGGCACCAGCAACCTGGCG
AGCGGCGTGCCGAGCCGCTTTAGCGGCAGCGGCAGCGGCACCGAA'TTTACCCTGAC
CATTAGCAGCCTGCAGCCGGAAGA1-111 GCGACCTATTATTGCCAGCAGTGGACCA
CCACCTATACCTTTGGCCAGGGCACCAAACTGGAAATTAAACGT (SEQ ID NO:369)
Ab-18 heavy chain variable domain amino acid sequence (without signal
sequence):
EVQLVQSGAEVKKPGASVKVSCKASGFNIKbyYIHWVRQAPGQGLEWMGRIDPDNGE
STYYPKFQPRVTMTTDTSTSTAYMELRSLRSDDTAVYYCAREGLI5YGDYYAVDY*6.
QGTLVTVSS (SEQ ID NO:370)
Ab-18 heavy chain variable domain DNA sequence (without signal sequence):
GAAGTGCAGCTGGTGCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTGA
AAGTGAGCTGCAAAGCGAGCGGCTTTAACATTAAAGATTATTATATTCA'TTGGGTG
CGCCAGGCGCCGGGCCAGGGCCTGGAATGGATGGGCCGCATTGATCCGGATAACGG
CGAAAGCACCTATGTGCCGAAAT1-1CAGGGCCGCGTGACCATGACCACCGATACCA
GCACCAGCACCGCGTATATGGAACTGCGCAGCCTGCGCAGCGATGATACCGCGGTG
TATTATTGCGCGCGCGAAGGCCTGGATTATGGCGATTATTATGCGGTGGATTATTGG
GGCCAGGGCACCCTGGTGACCGTCTCGAGC (SEQ ID NO:371)
Ab-19
Amino acid sequence of the Ab-19 LC including signal peptide:
MMSSAQFLGLILLCFCCTRCDIQMTQTTSSLSASLGDRVN. ISCIZASQDISSYLNWYQQK
PDGTVKLLIYRFSRIN GVPSRF'SGSGSGTDYSLTISNLAQEDIATitCQQDTFGGG
TKLELKR (SEQ ID NO:307)
Nucleic acid sequence of the Ab-19 LC including signal peptide:
ATGATGTCCTCTGCTCAGTTCCTTGGTCTCCTGTTGCTCTGTTITCAAGGTACCAGAT
GTGATATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAG
TCAACATCAGCTGCAGGGCAAGTCAGGACATTAGCAGTTA ____________________________
r1TAAACTGGTATCAG
CAGAAACCAGATGGAACTGTTAAACTCCTGATCTACTCCACATCAAGATTAAACTC
AGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGGACAGATTATTCTCTCACTAT
TAGCAACCTGGCACAAGAAGATATTGCCAC'TTAC1TnGCCAACAGGATATTAAGC
ATCCGACGTTCGGTGGAGGCACCAAGTTGGAGCTGAAACGT (SEQ ID NO:308)
Amino acid sequence of the Ab-19 HC including signal peptide:
94

CA 02947080 2016-11-01
WI7V+1=FLLSGTA-GVHSEvgLQgf.GPELVKPG.A.SVKIVIS CKA S ________ iii-fnvii-V/VKQ
GWLEWIGYIL\IPYINDY-NfiCF1(.6KATLTSDKSS.S.TAX1IDLSSLTSE-aSA.ZICA
aS1Yi-YDP-t7.4.YVGQGTLVTVSS (SEQ D NO:309)
Nucleic acid sequence of the Ab-19 HC including signal peptide:
ATGGAATGGATCTGGATATTTCTCTTCCTCCTGTCAGGAACTGCAGGTGTCCACTCT
GAGGTCCAGCTGCAGCAGTCTGGACCTGAGCTGGTAGCCTGGGGCTTCAGTGAA
GATGTCCTGCAAGGC11. CTGGOTTOACATTCACTGACTACATTATGCACTGGOTGA.A.
GCAGAAGGCTGGGCAGGGCLTTGAGTGGATTGGATATATTAATCCTT.ACTGATG
ATA.CTGAA.TACAATGAGAAGTTCAAAGGCAA.GGCCACACTGACTTCA.GACAAATCC
TCCAGCACAGCCTACATGGATCTCAGCAGTCTGACCTCTGAGGGCTCTGCOGTCTAT
TACTGTGCAAGATCGA11 __ I ATTACTAC CATO C CCCG1-11 GCTTA.CTOGGG CCAAOGG
ACTCTGGTCACAGTCTCGAGC (SEQ ID NO:310)
Ab-19 was humanized to. generate Antibody 20 (also referred to herein as Ab-
20) and Antibody
23 (also refer.-ed to herein as Ab-23).
Additional sequences associated with Ab-19:
Glu Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Ala Ser Gly Phe Thr Phe Thr Asp Tyr
20 25 30
Ile Met His Trp Val Lys Gin Lys Pro Gly Gin Gly Leu Glu Trp lie
35 40 45
Gly Tyr Ile Asn Pro Tyr Asn Asp Asp Thr Glu Tyr Asn Glu Lys Phe
50 55 60
Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Asp Leu Ser Ser Leu Thr Ser Glu Gly Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Ser Ile Tyr Tyr Tyr Asp Ala Pro Phe Ala Tyr Trp Gly Gin
100 105 110
Gly Thr Leu Val Thr Val Ser Ser (SEQ 1D NO: 327)
115 120
Asp Ile Gin Met Thr Gin Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Asp Arg Val Mn Ile Ser Cys Arg Ala Ser Gin Asp Ile Ser Ser Tyr
20 25 30
Leu Asn Trp Tyr Gin Gin Lys Pro Asp Gly Thr Val Lys Lau Leu Ile
35 40 45
Tyr Ser Thr Ser Arg Len Mn Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr He Ser Mn Leu Ala Gin
65 70 75 80
Glu Asp Ile Ala Thr Tyr Phe Cys Gin Gin Asp Ile Lys His Pro Thr
85 90 95
Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys Arg (SEQ ED NO: 314)
100 105

CA 02947080 2016-11-01
Asp He Gin Met Thr Gin Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Asp Arg Val Asn He Ser Cys Arg Ala Ser Gin Asp He Ser Ser Tyr
20 25 30
Leu Asn Trp Tyr Gin Gin Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
35 40 45
Tyr Ser Thr Ser Arg Leu Asn Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Ala Gin
65 70 75 80
Glu Asp Ile Ala Thr Tyr Phe Cys Gin Gin Asp He Lys His Pro Thr
85 90 95
Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys Arg Thr Asp Ala Ala Pro
100 105 110
Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gin Leu Thr Ser Gly Gly
115 120 125
Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp He Asn
130 135 140
Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gin Asn Gly Val Leu Mn
145 150 155 160
Ser Trp Thr Asp Gin Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser
165 170 175
Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr
180 185 190
Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe
195 200 205
Asn _Arg Asn Glu Cys (SEQ ID NO: 334)
Glu Val Gin Leu Gin Gin Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Ala Ser Gly Phe Thr Phe Thr Asp Tyr
20 25 30
Be Met His Trp Val Lys Gin Lys Pro Gly Gin Gly Leu Glu Trp He
35 40 45
Gly Tyr Ile Asn Pro Tyr Asn Asp Asp Thr Glu Tyr Asn Glu Lys Phe
50 55 60
Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Asp Leu Ser Ser Leu Thr Ser Glu Gly Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Ser Ile Tyr Tyr Tyr Asp Ala Pro Phe Ala Tyr Trp Gly Gin
100 105 110
Gly Thr Leu Val Thr Val Ser Ser Ala Lys Tlx Thr Pro Pro Ser Val
115 120 125
Tyr Pro Leu Ala Pro Gly Ser Ala Ala Gin Thr Asn Ser Met Val Thr
130 135 140
Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr
145 150 155 160
Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val
165 170 175
Leu Gin Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Tin- Val Pro Ser
180 185 190
Ser Tar Trp Pro Ser Glu Thr Val Thr Cys Asn Val Ala His Pro Ala
195 200 205
Ser Ser Thr Lys Val Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys
95a

CA 02947080 2016-11-01
210 215 220
Lys Pro Cys Ile Cys Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe
225 230 233 240
Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val
245 250 255
Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val Gin Phe
260 265 270
Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gin Thr Gin Pro
275 280 285
Arg Glu Glu Gin Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Lau Pro
290 295 300
Ile Met His Gin Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val
305 310 315 320
Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr
325 330 335
Lys Gly Arg Pro Lys Ala Pro Gin Val Tyr Thr Ile Pro Pro Pro Lys
340 345 350
Glu Gin Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile Thr Asp
355 360 365
Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gin Trp Asn Gly Gin Pro
370 375 380
Ala Glu Asn Tyr Lys Asn Thr Gin Pro He Met Asp Thr Asp Gly Ser
385 390 395 400
Tyr Phe Val Tyr Ser Lys Leu Asn Val Gin Lys Ser Asn Trp Glu Ala
405 410 415
Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His
420 425 430
His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys (SEQ ID NO: 335)
435 440
Ab-20
IgG4 version
Amino acid sequence of the Ab-20 LC including signal peptide:
=
Na/ESAQFLGLLLLCFOGTRODIQMTQSPSSLSASVGDP_VTITCRI.TkSql5I¨SNVYQQK
PGKAPKLLP4TS4.,NIS;GVP,SRFSGSGSGTpFTLTISSLQ2EDFAc.p.gpriGQG
¨
TKVEIKR (SEQ NO 311) .
õ .
Nucleic acid sequence of the Ab-20 LC including Signal peptide:
ATGATGTCCTCTGCTC,.kC-TTCL:11 GGTCTCCTGTTGCTCTG1-1-1-1 CA_AGGTA CCA GAT
GTGATATCCAGATOACCCAGTCTCCATCCTCCCTOTCTGCATCTOTAGGTGACCOTG
TCACCATCAUl. 1 GCCGCGCAAGTCAGGAT.kTTAGCAGCTA iiiA_AATTGGTATCAGC
.AGAAACCAGGGAAAGCCCCTA_AOCTCCTGATCT.A.TTCTACTTCCCGIT1GAATAGTG
GGGTCCCATCACGCTTCAGTGGCAGTGGCTCTGGGACA.GAITI _______________ CACTCTCACCATCA
GCAGTCTGCAACCTaAA.GAITITGCAAC:.1-1AUFACTCTCAACAGGATATTAAAGACC
C'TACG 11 CGGTCAAOGCACCAAGGTGGAG.ATCAAACGT (SEQ ID NO:312)
95b

CA 02947080 2016-11-01
Amino acid sequence of the Ab-20 HC including signal peptide:
ivfEWTNLFLFLLSGTAGT-ISEVQLVQSGA.EVKKPGSSVKVSCKASCFTFT:fW3WVRQ
APOQGLEWIvIqYLTNFA-STDDTEEKFTG:R.VTITADKSTSTAYELSSI,RSEDT.,\.VY-YCA
17,:SrlYYp.XPFA1WGQGTLVTVSS (SEQ ED NO:3 13)
Nucleic acid sequence of the Ab-20 HC including signal pepdde:
ATOGAATGGATCTGGATAI:1-1CTOTTCCTCCTGTCAGGAALTGCAGGTOTCCACTCT
93O

CA 02947080 2016-11-01
-"GAGGTGCAUCTOOTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAA
GGTCTCCTGCAAGGCTTCTGGTMACCTTCACCGACTATATTATGCACTGGGTGCG
TCAGGCCCCTGGTCAAGGGCTTGAGTGGATGGGCTATATCAACCCTTATAATGATG
ACACCGAATACAACGAGAAGTTCAAGGGCCGTGTCACGATTACCGCGGACAAATCC
ACGAGCACAGCCTACATGGAGCTGAGCAGCCTGCGCTCTGAGGACACGGCCGTGTA
TTACTGTGCGCGTTCGATTTATTACTACGATGCCCCGTTTGCTTACTGGGGCCAAGG
GACTCTGGTCACAGTCTCGAGC (SEQ ID NO:349)
Ab-23
IgG2 version
Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-23
LC:
1 DIQMTQSPSS LSASVGDRVT ITCRASQDIS SYLN,WYQQKP GKAPKWYS
51 TSR-LNSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQDIKIgTFGQG
101 TKVELKR TVA APSVFIFPPS DEQLKSGTAS VVCLLNNFYP REAKVQWKVD
151 NALQSGNSQE SVTEQDSKDS TYSLSSTLTL SKADYEKHKV YACEVTHQGL
201 SSPVTKSFNR GEC (SEQ ID NO:341)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-23 LC:
1 GACATCCAGA TGACCCAGTC TCCATCCTCC CTGTCTGCAT CTGTAGGTGA
51 CCGTGTCACC ATCACTTGCC GCGCAAGTCA GGATATTAGC AGCTATTTAA
101 ATTGGTATCA GCAGAAACCA GGGAAAGCCC CTAAGCTCCT GATCTATTCT
151 ACTTCCCGTT TGAATAGTGG GGTCCCATCA CGCTTCAGTG GCAGTGGCTC
______________________________________________________ 201 TGGGACAGAT
TTCACTCTCA CCATCAGCAG TCTGCAACCT GAAGA ITI TG
251 CAACTTACTA CTGTCAACAG GATATTAAAC ACCCTACGTT CGGTCAAGGC
301 ACCAAGGTGG AGATCAAACG TACGGTGGCT GCACCATCTG TCTTCATCTT
351 CCCGCCATCT GATGAGCAGT TGAAATCTGG AACTGCCTCT GTTGTGTGCC
401 TGCTGAATAA CTTCTATCCC AGAGAGGCCA AAGTACAGTG GAAGGTGGAT
451 AACGCCCTCC AATCGGGTAA CTCCCAGGAG AGTGTCACAG AGCAGGACAG
501 CAAGGACAGC ACCTACAGCC TCAGCAGCAC CCTGACGCTG AGCAAAGCAG
551 ACTACGAGAA ACACAAAGTC TACGCCTGCG AAGTCACCCA TCAGGGCCTG
601 AGCTCGCCCG TCACAAAGAG CTTCAACAGG GGAGAGTGT (SEQ ID NO:342)
Amino acid sequence of the Ab-23 LC including signal peptide:
1 MDMRVPAQLL GLLLLWLRGA RCDIQMTQSP SSLSASVGDR VTITCRASQD
51 ISSYLNWYQQ KPGKAPKLLI YSTSRLNSGV PSRFSGSGSG TDFTLTISSL
101 QPEDFATYYC QQDIKHPTFG QGTKVEIKRT VAAPSVFIFP PSDEQLKSGT
151 ASVVCLLNNF YPREAKVQWK VDNALQSGNS QESVTEQDSK DSTYSLSSTL
201 TLSKADYEKH KVYACEVTHQ GLSSPVTKSF NRGEC (SEQ ID NO:343)
Nucleic acid sequence of the Ab-23 LC including signal peptide encoding
sequence:
1 ATGGACATGA GGGTGCCCGC TCAGCTCCTG GGGCTCCTGC TGCTGTGGCT
51 GAGAGGTGCC AGATGTGACA TCCAGATGAC CCAGTCTCCA TCCTCCCTGT
96

CA 02947080 2016-11-01
101 CTGCATCTGT AGGTGACCGT GTCACCATCA CTTGCCGCGC AAGTCAGGAT
151 ATTAGCAGCT AlT1AAATTG GTATCAGCAG AAACCAGGGA AAGCCCCTAA
201 GCTCCTGATC TATTCTACTT CCCG1-1-1GAA TAGTGGGGTC CCATCACGCT
251 TCAGTGGCAG TGGCTCTGGG ACAGATI1CA CTCTCACCAT CAGCAGTCTG
301 CAACCTGAAG A1T1-1 GCAAC TTACTACTGT CAACAGGATA TTAAACACCC
351 TACGTTCGGT CAAGGCACCA AGGTGGAGAT CAAACGTACG GTGGCTGCAC
401 CATCTGTCTT CATCTTCCCG CCATCTGATG AGCAGTTGAA ATCTGGAACT
451 GCCTCTGTTG TGTGCCTGCT GAATAACTTC TATCCCAGAG AGGCCAAAGT
501 ACAGTGGAAG GTGGATAACG CCCTCCAATC GGGTAACTCC CAGGAGAGTG
551 TCACAGAGCA GGACAGCAAG GACAGCACCT ACAGCCTCAG CAGCACCCTG
601 ACGCTGAGCA AAGCAGACTA CGAGAAACAC AAAGTCTACG CCTGCGAAGT
651 CACCCATCAG GGCCTGAGCT CGCCCGTCAC AAAGAGCTTC AACAGGGGAG
701 AGTGT (SEQ ID NO:344)
Heavy Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-23
HC:
1 EVQLVQSGAE VKKPGSSVKV SCKASGFTFT DYIIVIHWVRQA PGQGLEWMGY
51 INPYNDDTEY NEKFK.ORVTI TADKST STAY MELSSLRSED TAVYYCARSI
101 YYYDAPFAYW bQGTLVTVSS ASTKGPSVFP LAPCSRSTSE STAALGCLVK
_
151 DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSNFGTQT
201 YTCNVDHKPS NTKVDKTVER KCCVECPPCP APPVAGPSVF LFPPKPKDTL
251 MISRTPEVTC VVVDVSHEDP EVQF1VWYVDG VEVHNAKTKP REEQFNSTFR
301 VVSVLTVVHQDWLNGKEYKC KVSNKGLPAP IEKTISKTKG QPREPQVYTL
351 PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPMLDSD
401 GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK (SEQ ID
NO:345)
Amino acid sequence of the mature form (signal peptide removed) of the Ab-23
HC without
carboxy-terminal lysine:
1 EVQLVQSGAE VKKPGSSVKV SCKASGFTFT DYLMAWVRQA PGQGLEWMGY
51 WYNDDTEY1\TEKFKGRVTI TADKSTSTAY MELSSIRSED TAVYYCARSI
101 YYMAPFAYW GQdTLVTVSS ASTKGPSVFP LAPCSRSTSE STAALGCLVK
151 DYFPEPVTVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSNFGTQT
201 YTCNVDHKPS NTKVDKTVER KCCVECPPCP APPVAGPSVF LFPPKPKDTL
251 MISRTPEVTC VVVDVSHEDP EVQFNWYVDG VEVHNAKTKP REEQFNSTFR
301 VVSVLTVVHQ DWLNGKEYKC KVSNKGLPAP IEKTISKTKG QPREPQVYTL
351 PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPE1VNY KT7'PPMLDSD
401 GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPG (SEQ ID
NO:396)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-23 HC:
1 GAGGTGCAGC TGGTGCAGTC TGGGGCTGAG GTGAAGAAGC CTGGGTCCTC
51 GGTGAAGGTC TCCTGCAAGG CITCTGGITI TACCTTCACC GACTATATTA
101 TGCACTGGGT GCGTCAGGCC CCTGGTCAAG GGCTTGAGTG GATGGGCTAT
151 ATCAACCCTT ATAATGATGA CACCGAATAC AACGAGAAGT TCAAGGGCCG
97

CA 02947080 2016-11-01
201 TGTCACUATT A.CCGCGGACA AATCCACGAG CACAGCCTAC ATGGAGCTGA
251 GCAGCCTGCG CTCTGAGGAC ACGGCCGTGT ATTACTGTGC GCGTTCGATT
301 TATTACTACG ATGCCCCGTT TGCTTACTGG GGCCAAGGGA CTCTGGTCAC
351 CGTCTCTAGT GCCTCCACCA AGGGCCCATC GGTCTTCCCC CTGGCGCCCT
401 GCTCCAGGAG CACCTCCGAG AGCACAGCGG CCCTGGGCTG CCTGGTCAAG
451 GACTACTFCC CCGAACCGGT GACGGTGTCG TGGAACTCAG GCGCTCTGAC
501 CAGCGGCGTG CACACCTTCC CAGCTGTCCT ACAGTCCTCA GGACTCTACT
551 CCCTCAGCAG CGTGGTGACC GTGCCCTCCA GCAACTTCGG CACCCAGACC
601 TACACCTGCA ACGTAGATCA CAAGCCCAGC AACACCAAGG TGGACAAGAC
651 AGTTGAGCGC AAATGTTGTG TCGAGTGCCC ACCGTGCCCA GCACCACCTG
701 TGGCAGGACC GTCAGTCTT'C CTCTTCCCCC CAAAACCCAA GGACACCCTC
751 ATGATCTCCC GGACCCCTGA GGTCACGTGC GTGGTGGTGG ACGTGAGCCA
801 CGAAGACCCC GAGGTCCAGT TCAACTGGTA CGTGGACGGC GTGGAGGTGC
851 ATAATGCCAA GACAAAGCCA CGGGAGGAGC AGTTCAACAG CACGTTCCGT
901 GTGGTCAGCG TCCTCACCGT TGTGCACCAG GACTGGCTGA ACGGCAAGGA
951 GTACAAGTGC AAGGTCTCCA ACAAAGGCCT CCCAGCCCCC ATCGAGAAAA
1001 CCATCTCCAA AACCAAAGGG CAGCCCCGAG AACCACAGGT GTACACCCTG
1051 CCCCCATCCC GGGAGGAGAT GACCAAGAAC CAGGTCAGCC TGACCTGCCT
1101 GGTCAAAGGC TTCTACCCCA GCGACATCGC CGTGGAGTGG GAGAGCAATG
1151 GGCAGCCGGA GAACAACTAC AAGACCACAC CTCCCATGCT GGACTCCGAC
1201 GGCTCCTTCT TCCTCTACAG CAAGCTCACC GTGGACAAGA GCAGGTGGCA
1251 GCAGGGGAAC GTCTTCTCAT GCTCCGTGAT GCATGAGGCT CTGCACAACC
1301 ACTACACGCA GAAGAGCCTC TCCCTGTCTC CGGGTAAA (SEQ ID NO:346)
Amino acid sequence of the Ab-23 HC including signal peptide:
1 MDWTWRILFL VAAATGAHSE VQLVQSGAEV KKPGSSVKVS CKASGFTFTD
51 YIMHWVRQAP GQGLEWMGYI NPYNDDTEYN EKFKGRVTIT ADKSTSTAYM
101 ELSSLRSEDT AVYYCARSIY YYDAPFAYWG QGTLVTVSSA STKGPS'VFPL
151 APCSRSTSES TAALGCLVKD YFPEPVTVSW NSGALTSGVH TFPAVLQSSG
201 LYSLSSVVTV PSSNFGTQTY TCNVDHKPSN TKVDKTVERK CC'VECPPCPA
251 PPVAGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VQFNWYVDGV
301 EVHNAKTKPR EEQFNSTFRV VSVLTVVHQD WLNGKEYKCK VSNKGLPAPI
351 EKTISKTKGQ PREPQVYTLP PSREEMTKNQ VSLTCLVKGF YPSDIAVEWE
401 SNGQPENNYK TTPPMLDSDG SFFLYSKLTV DKSRWQQGNV FSCSVMHEAL
451 HNHYTQKSLS LSPGK (SEQ ID NO:347)
Nucleic acid sequence of the Ab-23 HC including signal peptide encoding
sequence:
1 ATGGACTGGA CCTGGAGGAT CCTCTTCTTG GTGGCAGCAG CCACAGGAGC
51 CCACTCCGAG GTGCAGCTGG TGCAGTCTGG GGCTGAGGTG AAGAAGCCTG
101 GGTCCTCGGT GAAGGTCTCC TGCAAGGCTT CTGGITF1AC CTTCACCGAC
151 TATATTATGC ACTGGGTGCG TCAGGCCCCT GGTCAAGGGC TTGAGTGGAT
201 GGGCTATATC AACCCTTATA ATGATGACAC CGAATACAAC GAGAAGTTCA
251 AGGGCCGTGT CACGATTACC GCGGACAAAT CCACGAGCAC AGCCTACATG
301 GAGCTGAGCA GCCTGCGCTC TGAGGACACG GCCGTGTATT ACTGTGCGCG
351 TTCGAITI _____________________________________________________ AT
TACTACGATG CCCCGTTTGC TTACTGGGGC CAAGGGACTC
401 TGGTCACCGT CTCTAGTGCC TCCACCAAGG GCCCATCGGT CTTCCCCCTG
451 GCGCCCTGCT CCAGGAGCAC CTCCGAGAGC ACAGCGGCCC TGGGCTGCCT
501 GGTCAAGGAC TACTTCCCCG AACCGGTGAC GGTGTCGTGG AACTCAGGCG
551 CTCTGACCAG CGGCGTGCAC ACCTTCCCAG CTGTCCTACA GTCCTCAGGA
98

CA 02947080 2016-11-01
601 CTCTAC'fbdc TCAGCAGCGT GGTGACCGTG CCCTCCAGCA ACTTCGGCAC
651 CCAGACCTAC ACCTGCAACG TAGATCACAA GCCCAGCAAC ACCAAGGTGG
701 ACAAGACAGT TGAGCGCAAA TGTTGTGTCG AGTGCCCACC GTGCCCAGCA
751 CCACCTGTGG CAGGACCGTC AGTCTTCCTC TTCCCCCCAA AACCCAAGGA
801 CACCCTCATG ATCTCCCGGA CCCCTGAGGT CACGTGCGTG GTGGTGGACG
851 TGAGCCACGA AGACCCCGAG GTCCAGTTCA ACTGGTACGT GGACGGCGTG
901 GAGGTGCATA ATGCCAAGAC AAAGCCACGG GAGGAGCAGT TCAACAGCAC
951 GTTCCGTGTG GTCAGCGTCC TCACCGTTGT GCACCAGGAC TGGCTGAACG
1001 GCAAGGAGTA CAAGTGCAAG GTCTCCAACA AAGGCCTCCC AGCCCCCATC
1051 GAGAAAACCA TCTCCAAAAC CAAAGGGCAG CCCCGAGAAC CACAGGTGTA
1101 CACCCTGCCC CCATCCCGGG AGGAGATGAC CAAGAACCAG GTCAGCCTGA
1151 CCTGCCTGGT CAAAGGCTTC TACCCCAGCG ACATCGCCGT GGAGTGGGAG
1201 AGCAATGGGC AGCCGGAGAA CAACTACAAG ACCACACCTC CCATGCTGGA
1251 CTCCGACGGC TCCTTCTTCC TCTACAGCAA GCTCACCGTG GACAAGAGCA
1301 GGTGGCAGCA GGGGAACGTC TTCTCATGCT CCGTGATGCA TGAGGCTCTG
1351 CACAACCACT ACACGCAGAA GAGCCTCTCC CTGTCTCCGG GTAAA (SEQ ID
NO:348)
The CDR (complementarity determining region) sequences in the variable region
of the heavy chain of Ab-23 are as follows:
CDR-H1: DYIMH (SEQ ID NO:269)
CDR-H2: YINPYNDDTEYNEKFKG (SEQ ID NO:270)
CDR-H3: SIYYYDAPFAY (SEQ ID NO:271)
The light chain variable region CDR sequences of Ab-23 are:
CDR-Ll: RASQDISSYLN (SEQ ID NO:239)
CDR-L2: STSRLNS (SEQ ID NO:240)
CDR-L3: QQDIKHPT (SEQ ID NO:241)
Ab-23 Variable domains:
Ab-23 light chain variable domain amino acid sequence (without signal
sequence):
DIQMTQSPSS LSASVGDRVT ITCRASQDIS SYLNWYQQKP GKAPKWYS
TSRLNSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ DIKHPTFGQG
TKVEIK (SEQ ID NO:364)
Ab-23 light chain variable domain DNA sequence (without signal sequence):
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGTGACCGTGTC
ACC ATCACTTGCC GCGCAAGTCA GGATATTAGC AGCTA'TTTAA_ATTGGTATCA
GCAGAAACCA GGGAAAGCCC CTAAGCTCCT GATCTATTCTACTTCCCGTT
TGAATAGTGG GGTCCCATCA CGCTTCAGTG GCAGTGGCTCTGGGACAGAT
TTCACTCTCA CCATCAGCAG TCTGCAACCT GAAGATFITGCAACTTACTA
CTGTCAACAG GATATTAAAC ACCCTACGTT CGGTCAAGGCACCAAGGTGG
AGATCAAA (SEQ ID NO:365)
Ab-23 heavy chain variable domain amino acid sequence (without signal
sequence):
99

CA 02947080 2016-11-01
EVQLVQSGAE VICKPGSSVKV SCKASGFTFT DYIMHWVRQA
PGQGLEWMGYINPYNDDTEY NEKFKGRVTI TADKSTSTAY MELSSLRSED
TAVYYCARSIYYYDAPFAYW GQGTLVTVSS (SEQ ID NO:366)
Ab-23 heavy chain variable domain DNA sequence (without signal sequence):
GAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAA
GGTC TCCTGCAAGG CTTCTGGTTT TACCTT'CACC GACTATATTATGCACTGGGT
GCGTCAGGCC CCTGGTCAAG GGCTTGAGTG GATGGGCTATATCAACCCTT
ATAATGATGA CACCGAATAC AACGAGAAGT TCAAGGGCCGTGTCACGATT
ACCGCGGACA AATCCACGAG CACAGCCTAC ATGGAGCTGAGCAGCCTGCG
CTCTGAGGAC ACGGCCGTGT ATTACTGTGC GCGTTCGATTTATTACTACG
ATGCCCCGTT TGCTTACTGG GGCCAAGGGACTCTGGTCACCGTCTCTAGT (SEQ ID
NO:367)
Ab-21
Amino acid sequence of the Ab-21 LC including signal peptide:
MKSOTOVFVYMLLWLSGVEGDIVMTQSHKFMSTSVGDRVTITCKASQDYFTAVAWYQ
QKPGQSPKWYWASTRJ-ITGVPDRFTGSGSGTDFTLTISNVQSEDLADYFd-QQyS.SyPL't
FGAGTKLELKR (SEQ ID -N0:315)
Nucleic acid sequence of the Ab-21 LC including signal peptide:
ATGAAGTCACAGACCCAGGTC _______________________________________________ Fri
GTATACATGTTGCTGTGGTTGTCTGGTGTTGAA
GGAGACATTGTGATGACCCAGTCTCACAAATTCATGTCCACGTCAGTAGGAGACAG
GGTCACCATCACCTGCAAGGCCAGTCAGGATGTC __________________________________ Fri
ACTGCTGTAGCCTGGTATCA
ACAGAAACCAGGACAATCTCCTAAACTACTGA1TIACTGGGCATCCACCCGGCACA
CTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCA
TTAGCAATGTGCAGTCTGAAGACTTGGCAGATTATT'TCTGTCAACAATATAGCAGCT
ATCCTCTCACGTTCGGTGCTGGGACCAAGTTGGAGCTGAAACGT (SEQ ID NO:316)
Amino acid sequence of the Ab-21 HC including signal peptide:
MGWNWTIFFLMAVVTGVNSEVQLQQSGAELVRPGALVKLSCKASGFNIKPWV
KQRPEQGLEWIGRIDPENGIAMPKPOKASITTDTSSNTAYLQLSSLTSEDTAVYYCA
YDAGDE'AWFTYWG6TLVTVSS (SEQ ID NO 317)
Nucleic acid sequence of the Ab-21 HC including signal peptide:
ATGGGATGGAACTGGATCATCTTCTTCCTGATGGCAGTGGTTACAGGGGTCAATTCA
GAGGTICAGCTGCAGCAGICTGGGGCTGAGCTTGTGAGGCCAGGGGCCTTAGTCAA
GTTGTCCTGCAAAGCTTCTGGCTTCAATATT'AAAGACTACTATATGCACTGGGTGAA
GCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGAAGGATTGATCCTGAGAATGGTG
ATATTATATATGACCCGAAGTTCCAGGGCAAGGCCAGTATAACAACAGACACATCC
TCCAACACAGCCTACCTGCAGCTCAGCAGCCTGACGTCTGAGGACACTGCCGTCTAT
TACTGTGCTTACGATGCTGGTGACCCCGCCTGGTTTACTTACTGGGGCCAAGGGACT
CTGGTCACCGTCTCGAGC (SEQ lD NO:318)
100

CA 02947080 2016-11-01
Ab-21 was humanized to yield Ab-22.
Ab-22
Amino acid sequence of the Ab-22 LC including signal peptide:
MDMRVPAOLLGULLWLRGARCDIQMTQSPS SLSASVGDRVTITCK-A- SQDVFTAVAW
YQQKPGKAPKLLIYWASTRITTGVPSRFSGSGSGTDFTLTIS SLQPEDFATYYCNyS SYP
LTFGGGTKVEIKR (SEQ ID NO:319)
Nucleic acid sequence of the Ab-22 LC including signal peptide:
ATGGATATGCGCGTGCCGGCGCAGCTGCTGGGCCTGCTGCTGCTGTGGCTGCGCGG
CGCGCGCTGCGATATCCAGATGACCCAGAGCCCGAGCAGCCTGAGCGCGAGCGTGG
GCGATCGCGTGACCATTACCTGCAAAGCGAGCCAGGATGTGTTTACCGCGGTGGCG
TGGTATCAGCAGAAACCGGGCAAAGCGCCGAAACTGCTGATTTATTGGGCGAGCAC
CCGCCATACCGGCGTGCCGAGTCGCTTTAGCGGCAGCGGCAGCGGCACCGAI'll'IA
CCCTGACCATTAGCAGCCTGCAGCCGGAAGATTTTGCGACCTATTATTGCCAGCAGT
ATAGCAGCTATCCGCTGACCTTTGGCGGCGGCACCAAAGTGGAAATTAAACGT (SEQ
ID NO:320)
=
Amino acid sequence of the Ab-22 HC including signal peptide:
MDWTWSILFLVAAPTGAHSEVQLVQ SGAE'VKKPGASVKVSCKASGFNIKIWV
RQAPGQGLEWIGRTDANGDIliMPISFORVTMTTDTSTSTAYMELRSLRSDDTAV'YYC
AYDAGDPAWFTtWGQOTLVTVSS (SEQ ID NO 321)
Nucleic acid sequence of the Ab-22 HC including signal peptide:
ATGGATTGGACCTGGAGCATTCTGITI'CTGGTGGCGGCGCCGACCGGCGCGCATAG
CGAAGTGCAGCTGGTGCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTG
AAAGTGAGCTGCAAAGCGAGCGGCITIAACATTAAAGATTATTATATGCATTGGGT
GCGCCAGGCGCCGGGCCAGGGCCTGGAATGGATCGGCCGCATTGATCCGGAAAAC
GGCGATATTATTTATGATCCGAAATTTCAGGGCCGCGTGACCATGACCACCGATACC
AGCACCAGCACCGCGTATATGGAACTGCGCAGCCTGCGCAGCGATGATACCGCGGT
GTATTATTGCGCGTATGATGCGGGCGATCCGGCGTGGTTTACCTATTGGGGCCAGGG
CACCCTGGTGACCGTCTCGAGC (SEQ ID NO:322)
Ab-22 light chain variable domain amino acid sequence (without signal
sequence):
DIQMTQSPSS LSASVGDRVT ITCKASQDVF TAVAWYQQKP GKAPKLLIYW
ASTRHTGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YSSYPLTFGG
GTKVEIKR (SEQ ID NO:336)
Ab-22 light chain variable domain DNA sequence (without signal sequence):
GATATCCAGATGACCCAGAGCCCGAGCAGCCTGAGCGCGAGCGTGGGCGATCGCGT
GACCATTACCTGCAAAGCGAGCCAGGATGTGTTTACCGCGGTGGCGTGGTATCAGC
101

CA 02947080 2016-11-01
AGAAACCGGGCAAAGCGCCGAAACTGCTGA ITIATTGGGCGAGCACCCGCCATACC
GGCGTGCCGAGTCGCTTTAGCGGCAGCGGCAGCGGCACCGATMACCCTGACCAT
TAGCAGCCTGCAGCCGGAAGATITI ______ GCGACCTATTATTGCCAGCAGTATAGCAGCT
ATCCGCTGACC ___ ITIGGCGGCGGCACCAAAGTGGAAATTAAACGT (SEQ ID NO:337)
Ab-22 heavy chain variable domain amino acid sequence (without signal
sequence):
EVQLVQSGAE VKKPGASVKV SCKASGFNIK DYYMHWVRQA
PGQGLEWIGRIDPENGDIIY DPKFQGRVTM TT'DTSTSTAY MELRSLRSDD
TAVYYCAYDAGDPAWFTYWG QGTLVTVSS (SEQ TD NO:338)
Ab-22 heavy chain variable domain DNA sequence (without signal sequence):
GAAGTGCAGCTGGTGCAGAGCGGCGCGGAAGTGAAAAAACCGGGCGCGAGCGTGA
AAGTGAGCTGCAAAGCGAGCGGCTTTAACATTAAAGATTATTATATGCATTGGGTO
CGCCAGGCGCCGGGCCAGGGCCTGGAATGGATCGGCCGCATT'GATCCGGAAAACG
GCGATATTATTTATGATCCGAAATTTCAGGGCCGCGTGACCATGACCACCGATACCA
GCACCAGCACCGCGTATATGGAACTGCGCAGCCTGCGCAGCGATGATACCGCGGTG
TATTATTGCGCGTATGATGCGGGCGATCCGGCGTGGTTTACCTA'TTGGGGCCAGGGC
ACCCTGGTGACCGTCTCGAGC (SEQ ID NO:339).
For Ab-18, Ab-20, and Ab-22, the light chain human kappa constant region is as
follows:
TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQD
SKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC* (SEQ ID NO:325)
and the heavy chain human gamma-4 constant region is as follows:
ASTKGPSVFPLAPCSRSTSESTAALGCL VKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS
GLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSV
FLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNS
TYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISICAKGQPREPQVYTLPPSQEE
MTKNQVSLICLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR
WQEGNVFSCSVMHEALIINHYTQKSLSLSLGK* (SEQ ID NO:326)
The hinge region contains the Ser-241-Pro mutation to improve hinge stability
(Angal S et al,
(1993), Mol Immunol, 30(1), 105-108).
Ab-24
The sequences of Antibody 24 (also referred to herein as Ab-24) LC and HC are
as follows:
Light Chain:
Amino acid sequence of the mature form (signal peptide removed) of the Ab-24
LC:
1 DIVLTQSPAS LAVSLGQRAT IACKASQSVD YDGTSYMNWY QQKPGQPPKL
51 LIYAASNLES ETPARFSGTG SG'TDFTLNIH PVEEEDITTY YCQQS*N-EDPF
102

CA 02947080 2016-11-01
101 TFGGGTI&EiRRADAAPTVS IFPPSSEQLT SGGASVVCFL NNFYPKDINV
151 KWKIDGSERQNGVLNSWTDQDSKDSTYSMS STLTLTKDEY ERHNSYTCEA
201 THKTSTSPIV KSFNRNEC (SEQ ID NO:350)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-
24 LC:
1 GACATTGTGT TGACCCAGTC TCCAGCTTCT TTGGCTGTGT CTCTAGGGCA
51 GAGGGCCACC ATCGCCTGCA AGGCCAGCCA AAGTGTTGAT TATGATGGTA
101 CTAGT'TATAT GAATTGGTAC CAACAGAAAC CAGGACAGCC ACCCAAACTC
151 CTCATCTATG CTGCATCCAA TCTAGAATCT GAGATCCCAG CCAGGTTTAG
201 TGGCACTGGG TCTGGGACAG ACTTCACCCT CAACATCCAT CCTGTGGAGG
251 AGGAGGATAT CACAACCTAT TACTGTCAGC AAAGTAATGA GGATCCGTTC
301 ACGTTCGGAG GGGGGACCAA GTTGGAAATA AAACGGGCTG ATGCTGCACC
351 AACTGTATCC ATCTTCCCAC CATCCAGTGA GCAGTTAACA TCTGGAGGTG
401 CCTCAGTCGT GTGCTTCTTG AACAACTTCT ACCCCAAAGA CATCAATGTC
451 AAGTGGAAGA TTGATGGCAG TGAACGACAA AATGGCGTCC TGAACAGTTG
501 GACTGATCAG GACAGCAAAG ACAGCACCTA CAGCATGAGC AGCACCCTCA
551 CGTTGACCAA GGACGAGTAT GAACGACATA ACAGCTATAC CTGTGAGGCC
601 ACTCACAAGA CATCAACTTC ACCCATTGTC AAGAGCTTCA ACAGGAATGA
651 GTGTTAG (SEQ ID NO:354)
Amino acid sequence of the Ab-24 LC including signal peptide:
1 METDTILLWV LLLWVPGSTG DIVLTQSPAS LAVSLGQRAT IACKASQSVD
51 YDGTSYMNWY QQKPGQPPKL LIYAASNLES EIPARFSGTG SGTDFTLNIH
101 PVEEEDITTY YCQQSNEDPF TFGGGTKLEI KRADAAPTVS IFPPSSEQLT
151 SGGASVVCFL NNFYPKDINV KWKIDGSERQ NGVLNSWTDQ DSKDSTYSMS
201 STLTLTKDEY ERHNSYTCEA THXTSTSPIV KSFNRNEC (SEQ ID NO:355)
Nucleic acid sequence of the Ab-24 LC including signal peptide encoding
sequence:
1 ATGGAGACAG ACACAATCCT GCTATGGGTG CTGCTGCTCT GGGTTCCAGG
51 CTCCACTGGT GACATTGTGT TGACCCAGTC TCCAGCTTCT TTGGCTGTGT
101 CTCTAGGGCA GAGGGCCACC ATCGCCTGCA AGGCCAGCCA AAGTGTTGAT
151 TATGATGGTA CTAGTTATAT GAATTGGTAC CAACAGAAAC CAGGACAGCC
201 ACCCAAACTC CTCATCTATG CTGCATCCAA TCTAGAATCT GAGATCCCAG
251 CCAGGTTTAG TGGCACTGGG TCTGGGACAG ACTTCACCCT CAACATCCAT
301 CCTGTGGAGG AGGAGGATAT CACAACCTAT TACTGTCAGC AAAGTAATGA
351 GGATCCGTTC ACGTTCGGAG GGGGGACCAA GTTGGAAATA AAACGGGCTG
401 ATGCTGCACC AACTGTATCC ATCTTCCCAC CATCCAGTGA GCAGTTAACA
451 TCTGGAGGTO CCTCAGTCGT GTGCTI'CTTG AACAACTTCT ACCCCAAAGA
501 CATCAATGTC AAGTGGAAGA TTGATGGCAG TGAACGACAA AATGGCGTCC
551 TGAACAGTTG GACTGATCAG GACAGCAAAG ACAGCACCTA CAGCATGAGC
601 AGCACCCTCA CGTTGACCAA GGACGAGTAT GAACGACATA ACAGCTATAC
651 CTGTGAGGCC ACTCACAAGA CATCAACTTC ACCCATTGTC AAGAGCTTCA
701 ACAGGAATGA GTGTTAG (SEQ ID NO:356)
Ab-24 Heavy Chain:
103

CA 02947080 2016-11-01
Amino acid sequence of the mature form (signal peptide removed) of the Ab-24
HC:
1 QVQLQQPGTE LVRPGTSVKL SCKASGYIFT TYWMNWVKQR PGQGLEWIGIVI
51 IF1PSASEIRL DQKFKIjKATL TLDKSSSTAY MlifSGPTSVD SAVYYCAR.S0
101 EWGSMDYWGQ GTSVTVSSAK TTPPSVYPLA PGSAAQTNSM VTLGCLVKGY
151 FPEPVTVTWN SGSLSSGVHT FPAVLQSDLY TLSSSVTVPS STWPSETVTC
201 NVAHPASSTK VDKKIVPRDC GCKPCICTVP EVSSVFIFPP KPKDVLTITL
251 TPKVTCVVVD ISKDDPEVQF SWFVDDVEVH TAQTQPREEQ FNSTFRSVSE
301 LPIMHQDWLN GKEFKCRVNS AAFPAPIEKT ISKTKGRPKA PQVYTIPPPK
351 EQMAKDKVSL TCMITDFFPE DITVEWQWNG QPAENYKNTQ PIMDTDGSYF
401 IYSKLNVQKS NWEAGNTFTC SVLHEGLHNH HTEKSLSHSP GK (SEQ ID NO:357)
Nucleic acid sequence encoding the mature form (signal peptide removed) of the
Ab-24 HC:
1 CAGGTCCAAC TACAGCAGCC TGGGACTGAG CTGGTGAGGC CTGGAAC'TTC
51 AGTGAAGTTG TCCTGTAAGG CTTCTGGCTA CATCTTCACC ACCTACTGGA
101 TGAACTGGGT GAAACAGAGG CCTGGACAAG GCCTTGAGTG GATTGGCATG
151 ATTCATCCTT CCGCAAGTGA AATTAGGTT'G GATCAGAAAT TCAAGGACAA
201 GGCCACATTG ACTCTTGACA AATCCTCCAG CACAGCCTAT ATGCACCTCA
251 GCGGCCCGAC ATCTGTGGAT TCTGCGGTCT ATTACTGTGC AAGATCAGGG
301 GAATGGGGGT CTATGGACTA CTGGGGTCAA GGAACCTCAG TCACCGTCTC
351 CTCAGCCAAA ACGACACCCC CATCTGTCTA TCCACTGGCC CCTGGATCTG
401 CTGCCCAAAC TAACTCCATG GTGACCCTGG GATGCCTGGT CAAGGGCTAT
451 TTCCCTGAGC CAGTGACAGT GACCTGGAAC TCTGGATCCC TGTCCAGCGG
501 TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC ACTCTGAGCA
551 GCTCAGTGAC TGTCCCCTCC AGCACCTGGC CCAGCGAGAC CGTCACCTGC
601 AACGTTGCCC ACCCGGCCAG CAGCACCAAG GTGGACAAGA AAATTGTGCC
651 CAGGGA'TTGT GGTTGTAAGC CTTGCATATG TACAGTCCCA GAAGTATCAT
701 CTGTCTTCAT CTTCCCCCCA AAGCCCAAGG ATGTGCTCAC CATTACTCTG
751 ACTCCTAAGG TCACGTGTGT TGTGGTAGAC ATCAGCAAGG ATGATCCCGA
801 GGTCCAGTTC AGCTGGTTTG TAGATGATGT GGAGGTGCAC ACAGCTCAGA
851 CGCAACCCCG GGAGGAGCAG TTCAACAGCA CITI'CCGCTC AGTCAGTGAA
901 CTTCCCATCA TGCACCAGGA CTGGCTCAAT GGCAAGGAGT TCAAATGCAG
951 GGTCAACAGT GCAGCTTTCC CTGCCCCCAT CGAGAAAACC ATCTCCAAAA
1001 CCAAAGGCAG ACCGAAGGCT CCACAGGTGT ACACCATTCC ACCTCCCAAG
1051 GAGCAGATGG CCAAGGATAA AGTCAGTCTG ACCTGCATGA TAACAGACTT
1101 CTTCCCTGAA GACATTACTG TGGAGTGGCA GTGGAATGGG CAGCCAGCGG
1151 AGAACTACAA GAACACTCAG CCCATCATGG ACACAGATGG CTCTTACTTC
1201 ATCTACAGCA AGCTCAATGT GCAGAAGAGC AACTGGGAGG CAGGAAATAC
1251 TTTCACCTGC TCTGTGTTAC ATGAGGGCCT GCACAACCAC CATACTGAGA
1301 AGAGCCTCTC CCACTCTCCT GGTAAATGA (SEQ ID NO:361)
Amino acid sequence of the Ab-24 HC including signal peptide:
1 MGWSSIILFL VATATGVHSQ VQLQQPGTEL VRPGTSVKLS CKASGYIETT
51 YWMNWVKQRP GQGLEWIGMI HPSASEIRLD QKFKDKATLT LDKSSSTAYM
101 HLSGPTSVDS AVYYCARSGE WGSMDYWGQG TSVTVSSAKT TPPSVYPLAP
104

CA 02947080 2016-11-01
151 GSAAQTNSMV TLGCLVKGYF PEPVTVTWNS GSLSSGVHTF PAVLQSDLYT
201 LSSSVTVPSS TWPSETVTCN VAHPASSTKV DKKIVPRDCG CKPCICTVPE
251 VSSVFIFPPK PKDVLTITLT PKVTCVVVDI SKDDPEVQFS WFVDDVEVHT
301 AQTQPREEQF NSTFRSVSEL PIMHQDWLNG KEFKCRVNSA AFPAPIEKTI
351 SKTKGRPKAP QVYTIPPPKE QMAKDKVSLT CMITDFFPED ITVEWQWNGQ
401 PAENYKNTQP IMDTDGSYFI YSKLNVQKSN WEAGNTFTCS VIREGLHNI11-1
451 TEKSLSHSPG K (SEQ ID NO:362)
Nucleic acid sequence of the Ab-24 HC including signal peptide encoding
sequence:
1 ATGGGATGGA GCTCTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT
51 CCACTCCCAG GTCCAACTAC AGCAGCCTGG GACTGAGCTG GTGAGGCCTG
101 GAACTTCAGT GAAGTTGTCC TGTAAGGCTT CTGGCTACAT CTTCACCACC
151 TACTGGATGA ACTGGGTGAA ACAGAGGCCT GGACAAGGCC TTGAGTGGAT
201 TGGCATGATT CATCC1TCC0 CAAGTGAAAT TAGGTTGGAT CAGAAATTCA
251 AGGACAAGGC CACATTGACT CTTGACAAAT CCTCCAGCAC AGCCTATATG
301 CACCTCAGCG GCCCGACATC TGTGGATTCT GCGGTCTATT ACTGTGCAAG
351 ATCAGGGGAA TGGGGGTCTA TGGACTACTG GGGTCAAGGA ACCTCAGTCA
401 CCGTCTCCTC AGCCAAAACG ACACCCCCAT CTGTCTATCC ACTGGCCCCT
451 GGATCTGCTG CCCAAACTAA CTCCATGGTG ACCCTGGGAT GCCTGGTCAA
501 GGGCTACI1 _____ C CCTGAGCCAG TGACAGTGAC CTGGAACTCT GGATCCCTGT
551 CCAGCGGTGT GCACACCTTC CCAGCTGTCC TGCAGTCTGA CCTCTACACT
601 CTGAGCAGCT CAGTGACTGT CCCCTCCAGC ACCTGGCCCA GCGAGACCGT
651 CACCTGCAAC GTTGCCCACC CGGCCAGCAG CACCAAGGTG GACAAGAAAA
701 TTGTGCCCAG GGATTGTGGT TGTAAGCCTT GCATATGTAC AGTCCCAGAA
751 GTATCATCTG TCTTCATCTT CCCCCCAAAG CCCAAGGATG TGCTCACCAT
801 TACTCTGACT CCTAAGGTCA CGTGTGTTGT GGTAGACATC AGCAAGGATG
851 ATCCCGAGGT CCAGTTCAGC TGGTTTGTAG ATGATGTGGA GGTGCACACA
901 GCTCAGACGC AACCCCGGGA GGAGCAGTTC AACAGCACTT TCCGCTCAGT
951 CAGTGAACTT CCCATCATGC ACCAGGACTG GCTCAATGGC AAGGAGTT'CA
1001 AATGCAGGGT CAACAGTGCA GCTTTCCCTG CCCCCATCGA GAAAACCATC
1051 TCCAAAACCA AAGGCAGACC QAAGGCTCCA CAGGTGTACA CCATTCCACC
1101 TCCCAAGGAG CAGATGGCCA AGGATAAAGT CAGTCTGACC TGCATGATAA
1151 CAGACTTCTT CCCTGAAGAC ATT'ACTGTGG AGTGGCAGTG GAATGGGCAG
1201 CCAGCGGAGA ACTACAAGAA CACTCAGCCC ATCATGGACA CAGATGGCTC
1251 TTACTTCATC TACAGCAAGC TCAATGTGCA GAAGAGCAAC TGGGAGGCAG
1301 GAAATACTTT CACCTGCTCT GTGTTACATG AGGGCCTGCA CAACCACCAT
1351 ACTGAGAAGA GCCTCTCCCA CTCTCCTGGT AAATGA (SEQ ID NO:363)
The CDR sequences in the variable region of the light chain of Ab-24 are as
follows:
CDR-L1: KASQSVDYDGTSYMN (SEQ ID NO:351)
CDR-L2: AASNLES (SEQ ID NO:352)
CDR-L3: QQSNEDPFT (SEQ ID NO:353)
The CDR sequences in the variable region of the heavy chain of Ab-24 are as
follows:
CDR-H1: TYWMN (SEQ ID NO:358)
105

CA 02947080 2016-11-01
CDR-H2: MIHPSASB&DQKFKD (SEQ ID NO:359)
CDR-H3: SGEWGSMDY (SEQ ID NO:360)
Table 1 below provides the SEQ ID NOs and amino acid sequences of the CDR's
of Ab-A, Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-
9, Ab-10,
Ab-11, Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21,
Ab-22, Ab-
23, and Ab-24. Ll, L2, and L3 refer to light chain CDR's 1, 2, and 3, and H1,
H2, and H3 refer
to heavy chain CDR's 1, 2, and 3 according to the Kabat numbering system
(Kabat et al., 1987
in Sequences of Proteins of Immunological Interest, U.S. Department of Health
and Human
Services, NIH, USA).
106

CA 02947080 2016-11-01
Table 1
SEQ ED NO DESCRIPTION ' AlVIINO ACID SEQUENCE
54 Ab-A and Ab-i CDR-L1 QSSQSVYDNNWLA
55 Ab-A and Ab-1 CDR-L2 DASDLAS
56 Ati-A and Ab-1 CDR-L3 QGAYNDVIYA
51 Ab-A and Ab-1 CDR-H1 SYWMN
52 Ab-A and Ab-1 CDR-H2 TIDSGGRTDYASWAKG
53 Ab-A and Ab-1 CDR-H3 NWNL
60 Ab-B CDR-L1 SASSSVSFVD
61 Ab-B CDR-L2 RTSNLGF .
62 Ab-B CDR-L3 QQRSTYPPT
=
57 Ab-B CDR-H1 TSGMGVG
58 Ab-B CDR-H2 HIWWDDVKRYNPVLKS
59 Ab-B CDR-H3 EDFDYDEBYYAMDY
48 Ab-C CDR-L1 KASQSVDYDGDSYMN
49 Ab-C CDR-L2 AASNLES
50 Ab-C CDR-L3 QQSNEDPWT
45 Ab-C CDR-H1 DCYMN
46 Ab-C CDR-H2 DINPFNGGTTYNQKFKG
_
47 Ab-C CDR-H3 SHYYFDGRVPWDAMDY
42 Ab-D CDR-L1 QASQGTSINLN
43 Ab-D CDR-L2 GSSNLED
44 Ab-D CDR-L3 LQHSYLPYT
39 Ab-D CDR-141 DHYMS
40 Ab-D CDR-H2 DINPYSGETTYNQKFKG
41 Ab-D CDR-H3 DDYDASPFAY
275 Ab-2 CDR-L1 RASSSVYYYMH
276 Ab-2 CDR-L2 ATSNLAS
277 Ab-2 CDR-L3 QQWSSDPLT
287 Ab-2 CDR-H1 DYFIH
288 Ab-2.0R-H2 RLDPEDGESDYAPKFQD
289 Ab-2 CDR-H3 EDYDGTYTFFPY
278 Ab-3 and Ab-15 CDR-L1 SVSSTISSNHLH
279 Ab-3 and Ab-15 CDR-L2 GTSNLAS
280 ' Ab-3 and Ab-15 CDR-L3 QQWSSYPLT
290 Ab-3 and Ab-15 CDR-H1 DFYLH
291 Ab-3 and Ab-15 CDR-H2 RLDPENGDTIXDPKFQD
292 Ab-3 and Ab-15 CDR-H3 EADYFAIDGTSYWYFDV
78 Ab-4 and Ab-5 CDR-L1 RASQDISNYLN '
79 Ab-4 and Ab-5 CDR-L2 YTSRLLS
80 Ab-4 and Ab-5 CDR-L3 QQGDTLPYT
245 Ab-4 and Ab-5 CDR-H1 DYNMH
246 Ab-4 and Ab-5 CDR-H2 EINPNSGGAGYNQKFKG
241 Ab-4 and Ab-5 CDR-H3 LGYDDIYDDWYFDV
81 Ab-6 CDR-L1 RASQDISNYLN
99 Ab-6 CDR-L2 YTSRLHS
100 Ab-6 CDR-L3 QQGDTLPYT
,
248 Ab-6 CDR-H1 DYNMH
107

CA 02947080 2016-11-01
Table 1
SEQ ID NO DESCRIPTION , AMINO ACID SEQUENCE
249 Ab-6 CDR-H2 EINPNSGGSGYNQKFKG
250 Ab-6 CDR-H3 LVYDGSYEDWYEDV
101 Ab-1 CDR-L1 , RASQVITNYLY
102 Ab-7 CDR-L2 YTSRLHS ¨
103 Ab-7 CDR-L3 QQGDTLPYT
251 Ab-7 CDR-H1 DYNMH
252 Ab-7 CDR-H2 EINPNSGGAGYNQQFKG
253 Ab-7 CDR-H3LGYVONYEDWYEDV
104 Ab-8 CDR-L1 RASQDISNYLN
105 Ab-8 CDR-L2 YTSRLLS
106 Ab-8 CDR-L3 QQGDTLPYT
254 Ab-8 CDR-H1 DYNMH
255 Ab-8 CDR-H2 EINPNSGGAGYNQKFKG
256 Ab-8 CDR-H3 LGYDDIYDDWYFDV '
. 107 Ab-9 CDR-L1 RASQDISNYLN
108 Ab-9 CDR-L2 YTSRLFS
169 Ab-9 CDR-L3 QQGDTLPYT
257 ' Ab-9 CDR-H1 DYNMH
,
258 AS-9 CDR-H2 ' EIN15NSGGAGYNQKFKG
259 Ab-9 CDR-H3 LGYDDIYDDWYFDV
110 Ab-10 CDR-L1 RASQDISNYLN
111 Ab-10 CDR-L2 YTSRLLS
112 Ab-10 CDR-L3 QQGDTLPYT
260 Ab-10 CDR-H1 DYNMH
261 Ab-10 CDR-H2 , EINPNSGGAGYNQKFKG
262 Ab-i 0 CDR-H3 LGYDDIYDDWYFDV
,
281 Ab-11 and Ab-16 CDR-L1 RASSSISYIH '
282 Ab-11. and Ab-16 CDR-L2 ATSNLAS
283 Ab-11 and Ab-16 CDR-L3 QQWSSDPLT
293 - Ab-11 and Ab-16 CDR-H1DYYIH
,
294 Ab-11 and Ab-I6 CDR-H2 RVDPDNGETEFAPKFPG
295 Ab-11 and Ab-16 CDR-H3 EDYDGTYTWFPY .
113 Ab-12 CDR-LI RASQDISNYLN
114 Ab-12 CDR-L2 YTSTLQS '
,
' 115 Ab-12 CDR-L3 QQGDTLPYT
263 Ab-12 CDR-H1' DYNMH ,
264 Ab-12 CDR-112 EINPNSGGSGYNQKFKG
¨265 Ab-12 CDR-113 LGYYGNYEDWYEDV '
284 Ab-I3 and Ab-14 'CDR-LI RASSSVTSSYLN _
285 Ab-13 and Ab-14 CDR-L2 STSNLAS '
286 AS-13 and Ab-14 CDR-L3 QQYDFFPST
296 Ab-13 and Ab-14 CDR-H1DYYMN
. ,
297 Ab-13 and Ab-14 CDR-H2 DINPYNDDTTYNHKFKG
298 Ab-13 and Ab-14 CDR-H3 ETAVITTNAMD
116 Ab-17 and Ab-18 CDR-L1 SVSSSISSSNLH
237 Ab-17 and AS-18 CDR-L2 GTSNLAS
238 Ab-17 and Ab-18 CDR-L3 QQWTTTYT
,
108

CA 02947080 2016-11-01
Table 1
SEQ ID NO DESCRIPTION AMINO ACID SEQUENCE
266 Ab-17 and 'Ab-18 CDR-H1 DYYIH
267 Ab-17 and Ab-18 CDR-H2 RIDPDNGESTYVPKFQG
268 Ab-17 and Ab-18 CDR-H3 EGLDYGDYYAVDY
239 Ab-19, Ab-20 and Ab-23 CDR-L1 RASQDISSYLN
240 Ab-19, Ab-20 and Ab-23 CDR-L2 STSRLNS
241 Ab-19, Ab-20 and Ab-23 CDR-L3 QQDIKHPT
269 Ab-19, Ab-20 and Ab-23 CDR-H1 DYIMH
270 Ab-19, Ab-20 and Ab-23 CDR-H2 YINPYNDDTEYNEKFKG
271 Ab-19, Ab-20 and Ab-23 CDIt-113 SIYYYDAPFAY
242 Ab-21 and Ab-22 CDR-L1 KASQDVFTAVA
243 Ab-21 and Ab-22 CDR-L2 WASTRHT
244 Ab-21 and Ab-22 CDR-L3 QQYSSYPLT
272 Ab-21 and Ab-22 CDR-H1 DYYMH
273 Ab-21 and Ab-22 CDR-H2 RIDPENGDIIYDPKFQG
/74 Ab-21 and Ab-22 CDR-H3 DAGDPAWFTY
351 Ab-24 CDR-L1 KASQSVDYDGTSYMN
352 Ab-24 CDR-L2 AASNLES
353 Ab-24 CDR-L3 QQSNEDPFT
358 Ab-24 CDR-H1 TYWMN
359 Ab-24 CDR-H2 MIHPSASEIRLDQKFKD
360 Ab-24 CDR-H3 SGEWGSMDY
An oligopeptide or polypeptide is within the scope of the invention if it has
an
amino acid sequence that is at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%,
83%, 84%,
85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%
identical to least one of the CDR's of Table 1 above; and/or to a CDR of a
sclerostin binding
agent that cross-blocks the binding of at least one of antibodies Ab-A, Ab-B,
Ab-C, Ab-D, Ab-1,
Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10, Ab-11, Ab-12, Ab-13, Ab-
14, Ab-15,
Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22, Ab-23, and Ab-24 to
sclerostin, and/or is
cross-blocked from binding to sclerostin by at least one of antibodies Ab-A,
Ab-B, Ab-C, Ab-D,
Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10, Ab-11, Ab-12, Ab-
13, Ab-14,
Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22, Ab-23, and Ab-24;
and/or to a
CDR of a sclerostin binding agent wherein the binding agent can block the
inhibitory effect of
sclerostin in a cell based mineralization assay (i.e. a sclerostin
neutralizing binding agent);
and/or to a CDR of a sclerostin binding agent that binds to a Loop 2 epitope;
and/or to a CDR of
a sclerostin binding agent that binds to a T20.6 epitope; and/or to a CDR of a
sclerostin binding
agent that binds to a "T20.6 derivative (cystine-knot +4 arms)" epitope.
Sclerostin binding agent polypeptides and antibodies are within the scope of
the
invention if they have amino acid sequences that are at least 85%, 86%, 87%,
88%, 89%, 90%,
109

CA 02947080 2016-11-01
91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a variable region
of at least
one of antibodies Ab-A, Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6,
Ab-7, Ab-8,
Ab-9, Ab-10, Ab-11, Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-
20, Ab-
21, Ab-22, Ab-23, and Ab-24, and cross-block the binding of at least one of
antibodies Ab-A,
Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10,
Ab-11,
Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22,
Ab-23, and
Ab-24 to sclerostin, and/or are cross-blocked from binding to sclerostin by at
least one of
antibodies Ab-A, Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7,
Ab-8, Ab-9,
Ab-10, Ab-11, Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20,
Ab-21, Ab-
22, Ab-23, and Ab-24; and/or can block the inhibitory effect of sclerostin in
a cell based
mineralization assay (i.e. a sclerostin neutralizing binding agent); and/or
bind to a Loop 2
epitope; and/or bind to a T20.6 epitope; and/or bind to a "T20.6 derivative
(cystine-knot +4
arms)" epitope.
Polynucleotides encoding sclerostin binding agents are within the scope of the
invention if they have polynucleotide sequences that are at least 85%, 86%,
87%, 88%, 89%,
90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a
polynucleotide
encoding a variable region of at least one of antibodies Ab-A, Ab-B, Ab-C, Ab-
D, Ab-1, Ab-2,
Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10, Ab-11, Ab-12, Ab-13, Ab-14,
Ab-15, Ab-
16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22, Ab-23, and Ab-24, and wherein
the encoded
sclerostin binding agents cross-block the binding of at least one of
antibodies Ab-A, Ab-B, Ab-
C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-10, Ab-11,
Ab-12, Ab-
13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22, Ab-23, and
Ab-24 to
sclerostin, and/or are cross-blocked from binding to sclerostin by at least
one of antibodies Ab-
A, Ab-B, Ab-C, Ab-D, Ab-1, Ab-2, Ab-3, Ab-4, Ab-5, Ab-6, Ab-7, Ab-8, Ab-9, Ab-
10, Ab-11,
Ab-12, Ab-13, Ab-14, Ab-15, Ab-16, Ab-17, Ab-18, Ab-19, Ab-20, Ab-21, Ab-22,
Ab-23, and
Ab-24; and/or can block the inhibitory effect of sclerostin in a cell based
mineralization
assay(i.e. a sclerostin neutralizing binding agent); and/or bind to a Loop 2
epitope; and/or bind
to a T20.6 epitope; and/or bind to a "T20.6 derivative (cystine-knot +4 arms)"
epitope.
Antibodies according to the invention may have a binding affinity for human
sclerostin of less than or equal to 1 x 10-7M, less than or equal to 1 x 10-
8M, less than or equal to
1 x 10-9M, less than or equal to 1 x 10-19M, less than or equal to 1 x 10-11M,
or less than or equal
to lx 10-12M.
The affinity of a binding agent such as an antibody or binding partner, as
well as
the extent to which a binding agent (such as an antibody) inhibits binding,
can be determined by
110

CA 02947080 2016-11-01
one of ordinary skill in the art using conventional techniques, for example
those described by
Scatchard et al. (Ann. N.Y. Acad. ScL 51:660-672 (1949)) or by surface plasmon
resonance
(SPR; BIAcore, Biosensor, Piscataway, NJ). For surface plasmon resonance,
target molecules
are immobilized on a solid phase and exposed to ligands in a mobile phase
running along a flow
cell. If ligand binding to the immobilized target occurs, the local refractive
index changes,
leading to a change in SPR angle, which can be monitored in real time by
detecting changes in
the intensity of the reflected light. The rates of change of the SPR signal
can be analyzed to
yield apparent rate constants for the association and dissociation phases of
the binding reaction.
The ratio of these values gives the apparent equilibrium constant (affinity)
(see, e.g., Wolff et
al., Cancer Res. 53:2560-65 (1993)).
An antibody according to the present invention may belong to any immunoglobin
class, for example IgG, IgE, IgM, IgD, or IgA. It may be obtained from or
derived from an
animal, for example, fowl (e.g., chicken) and mammals, which includes but is
not limited to a
mouse, rat, hamster, rabbit, or other rodent, cow, horse, sheep, goat, camel,
human, or other
primate. The antibody may be an internalizing antibody. Production of
antibodies is disclosed
generally in U.S. Patent Publication No. 2004/0146888 Al.
Characterization Assays
In the methods described above to generate antibodies according to the
invention,
including the manipulation of the specific Ab-A, Ab-B, Ab-C, Ab-D, and
Antibody 1-24 (Ab-1
to Ab-24) CDRs into new frameworks and/or constant regions, appropriate assays
are available
to select the desired antibodies or binding agents (i.e. assays for
determining binding affinity to
sclerostin; cross-blocking assays; Biacore-based "human sclerostin peptide
epitope competition
binding assay;" MC3T3-E1 cell based assay; in vivo assays).
Epitope Binding Assays
Mature form human sclerostin is a 190 amino acid glycoprotein with a
cystine-knot structure (Figures 8 and 9). In addition to the cystine-knot
structure, the protein is
characterized as having three loops designated as Loop 1, Loop 2 and Loop 3.
Human sclerostin
was subjected to proteolytic digestion to produce fragments. Briefly, using
different proteases,
including trypsin, aspN, and lysC, fragments with various cleavage sites and
sizes were
generated. The sequences and mass for various human sclerostin peptides were
determined.
Antibody protection was evaluated to determine the effect on accessibility for
proteolysis,
111

CA 02947080 2016-11-01
including clipped site masking and peptide shifting. Finally, a BIAcore-based
"human sclerostin
peptide epitope competition assay" was performed.
Exposure of sclerostin to trypsin cleavage resulted in a pattern of peptide
fragments as summarized in Figure 13. The fragments are referred to as T19.2,
T20, T20.6, and
T21-22. As shown schematically in Figure 19B, the T20.6 epitope is a complex
of four separate
peptide sequences which are joined by the three disulfide bonds of the cystine-
knot region. Two
of the peptides are joined by two disulfide bonds. The other two peptides are
linked by one
disulfide bond that, schematically, bisects the first two polypeptides.
The T20.6 epitope that was generated by trypsin digestion retains the
cystine-knot structure of the native polypeptide and is recognized by
antibodies Ab-C and Ab-D.
A derivative of epitope T20.6 consists of the cystine-knot region and amino
acids 58-64, 73-81,
112-117 and 138-141 in sequence position with reference to SEQ ID NO: 1. This
derivative
epitope is shown in Figure 21. An epitope comprising the cystine-knot region
may have one or
more amino acids that is present in the T20.6 epitope (Figure 19B) but not
present in the T20.6
derivative epitope (Figure 21).
Another epitope-containing region was identified in the Loop 2 region of human

sclerostin (Figure 19A) and is recognized by antibodies Ab-A and Ab-B. A Loop
2 epitope
comprises amino acids 86-111 of SEQ ID NO:1 (C4GPARLLPNAIGRGKWWRPSGPDFRC5,
SEQ ID NO:6). Sterically, with reference to full-length sclerostin of SEQ ID
NO:1, the Loop 2-
containing structure is defined at one end by a disulfide bond between
cysteine at position 86
(C4) and cysteine at position 144 (C8), and at the other end by a disulfide
bond between cysteine
at position 111 (C5) and cysteine at position 57 (C1).
The peptides generated by aspN cleavage of human sclerostin are shown in
Figure 12. In the Figure, these peptides are designated as AspN14.6, AspN18.6,
and AspN22.7-
23.5, and are also referred to herein as N14.6, N18.6, and N22.7-23.5,
respectively.
One group of antibodies exhibits a specific pattern of binding to certain
epitopes
as evidenced by a Biacore-based "human sclerostin peptide epitope competition
binding assay."
Briefly, the antibody is preincubated with the epitope to be tested, at
concentrations that will
saturate the epitope-binding sites on the antibody. The antibody is then
exposed to sclerostin
bound to a chip surface. After the appropriate incubation and washing
procedures, a pattern of
competitive binding is established. As shown in Figure 18, exemplary antibody
Ab-D bound to
sclerostin molecules attached to the surface of the chip. Preincubation of
antibody Ab-D with
sclerostin decreased the binding of the antibody to the sclerostin on the chip
to close to zero.
Preincubation with a peptide consisting of epitope T19.2 showed that T19.2 did
not compete
112

CA 02947080 2016-11-01
with sclerostin for antibody binding. However, preincubation with any one of
the epitopes
designated T20, T20.6, T21-22, or N22.7-23.5 abolished a large proportion of
the binding of
antibody to sclerostin on the chip. In contrast, preincubation of the antibody
with any one of the
epitopes designated T19.2, N14.6 or N18.6 did not abolish the ability of the
antibody to bind to
sclerostin. A second exemplary antibody with this binding profile (Fig. 17) is
Ab-C.
Antibody Ab-D therefore is exemplary and representative of a group of
antibodies that bind to the epitopes T20, T20.6, 121-22, and N22.7-23.5, and
have minimal
detectable binding to epitopes T19.2, N14.6 and N18.6, as measured by the
ability to block
antibody binding to sclerostin. Antibodies having this characteristic binding
pattern may or may
not share amino acid sequence in one or more regions of the antibody molecule.
Antibody
similarity is determined functionally such as by the ability to bind to
sclerostin following
preincubation with each of the epitopes described above. Antibodies that
exhibit a binding
pattern similar or identical to that of antibody Ab-D are included in the
invention. By "similar
to" is meant, for example, the antibody will exhibit binding to each of the
polypeptides 120,
T20.6, T21-22 and N22.7-23.5 whereby this binding will specifically compete
out at least 50%
of the antibody's binding to sclerostin that would otherwise occur in the
absence of
preincubation with sclerostin or a sclerostin peptide. The antibody will also
exhibit little or no
detectable binding to polypeptides 119.2, N14.6 and N18.6, resulting in a
reduction of 30% or
less of the binding that would occur in the absence of preincubation with
sclerostin or a
sclerostin peptide.
For example, without being bound by a particular mechanism, the antibody
binding pattern of Figure 18 suggests that the epitope space to which antibody
Ab-D and other
antibodies having the epitope binding pattern of Ab-D bind consists of a
polypeptide comprising
the cystine-knot region of sclerostin.
Thus, as disclosed herein and with reference to Figure 19B, an exemplary T20.6
epitope comprises four peptide chains attached via three separate disulfide
bonds. Peptide chain
SAKPVTELVC3SGQC4GPAR (SEQ ID NO:3) is attached to peptide chain
LVASC7KC8KRLTR (SEQ ID NO:5) by disulfide bonds from C3 to C7, and from C4 to
C8.
Peptide chain DVSEYSC1RELHFTR (SEQ ID NO:2) is attached to peptide chain
WWRPSGPDFRC5IPDRYR (SEQ ID NO:4) by a disulfide bond from Cl to C5. The
polypeptides of SEQ ID NOs:3 and 5 remain associated with the polypeptides of
SEQ ID NOs:2
and 4 through a steno construct whereby the C1-05 bond crosses the plane of
the C4-C8 and
C3-C7 bonds and is located between them, as illustrated in Figure 19B.
113

CA 02947080 2016-11-01
As disclosed herein and with reference to Figure 21, an exemplary derivative
epitope of T20.6 comprises four peptide chains attached via three separate
disulfide bonds.
Peptide chain SAKPVTELVC3SGQC4 (SEQ ID NO:70) is attached to peptide chain
LVASC7KC8 (SEQ ID NO:71) by disulfide bonds from C3 to C7, and from C4 to C8.
Peptide
chain C1RELHFTR (SEQ ID NO:72) is attached to peptide chain C5IPDRYR (SEQ ID
NO:73)
by a disulfide bond from Cl to C5. The polypeptides of SEQ ID NOs:70 and 71
remain
associated with the polypeptides of SEQ ID NOs:72 and 73 through a steric
construct whereby
the C1-05 bond crosses the plane of the C4-C8 and C3-C7 bonds and is located
between them,
as illustrated in Figure 21.
Antibody Ab-A is exemplary and representative of a second group of antibodies
that have a characteristic binding pattern to human sclerostin peptides that
is distinct from that
obtained for antibodies Ab-C and Ab-D. Ab-A and the group of antibodies it
represents bind to
the N22.7-23.5 epitope and have minimal detectable binding to epitopes T19.2,
T20, T20.6,
T21-22, N14.6 or N18.6, as measured by the ability to block antibody binding
to sclerostin (Fig
15). A second exemplary antibody with this binding profile (Fig. 16) is Ab-B.
Antibodies
having this characteristic binding pattern may or may not share amino acid
sequence in one or
more regions of the antibody molecule. Antibody similarity is determined
functionally such as
by the ability to bind to sclerostin following preincubation with each of the
epitopes described
above. Antibodies that exhibit a binding pattern similar or identical to that
of antibody Ab-A are
included in the invention. By "similar to" is meant, for example, the antibody
will exhibit
binding to the N22.7-23.5 polypeptide whereby this binding will specifically
compete out at
least 50% of the antibody's binding to sclerostin that would otherwise occur
in the absence of
preincubation with sclerostin or a sclerostin peptide. The antibody will also
exhibit little or no
detectable binding to polypeptides T19.2, T20, T20.6, T21-22, N14.6 and N18.6,
resulting in a
reduction of 30% or less of the binding that would occur in the absence of
preincubation with
sclerostin or a sclerostin peptide.
For example, without being bound by a particular mechanism, the antibody
binding pattern of Figure 15 suggests that the epitope space to which antibody
Ab-A and other
antibodies having the epitope binding pattern of Ab-A bind consists of a
polypeptide comprising
the Loop 2 region of sclerostin. Thus, as disclosed herein and with reference
to Figure 19A, the
Loop 2 region can be described as a linear peptide, but it acquires a tertiary
structure when it is
present in native sclerostin or a cystine-knot-containing portion of
sclerostin in which the native
disulfide bond structure is maintained. The linear or tertiary structure of
the Loop 2 epitope can
affect antibody binding thereto, as discussed in the Examples. A Loop 2 region
can comprise
114

CA 02947080 2016-11-01
the to [lowing amino aaiirsequence: C4GPARLLPNAIGRGKWWRPSGPDFRC5 (SEQ ID
NO:6). "C4" refers to a cysteine residue located at position 86 with reference
to SEQ ID NO:!.
"C5" refers to a cysteine residue located at position 111 with reference to
SEQ ID NO:!. In
native sclerostin protein, C4 is linked to a cysteine at position 144 (C8) by
a disulfide bond, and
C5 is linked to a cysteine at position 57 (Cl) by a disulfide bond. Epitopes
derived from the
Loop 2 region include CGPARLLPNAIGRGKWWRPS (SEQ ID NO:63);
GPARLLPNAIGRGKWWRPSG (SEQ ID NO:64); PARLLPNAIGRGKWWRPSGP (SEQ ID
NO:65); ARLLPNAIGRGKWWRPSGPD (SEQ ID NO:66); RLLPNAIGRGKWWRPSGPDF
(SEQ ID NO:67); LLPNAIGRGKWWRPSGPDFR (SEQ ID NO:68); and
LPNAIGRGKWWRPSGPDFRC (SEQ ID NO:69)
CROSS-BLOCKING ASSAYS
The terms "cross-block", "cross-blocked" and "cross-blocking" are used
interchangeably herein to mean the ability of an antibody or other binding
agent to interfere
with the binding of other antibodies or binding agents to sclerostin.
The extent to which an antibody or other binding agent is able to interfere
with the
binding of another to sclerostin, and therefore whether it can be said to
cross-block according to
the invention, can be determined using competition binding assays. One
particularly suitable
quantitative assay uses a Biacore machine which can measure the extent of
interactions using
surface plasmon resonance technology. Another suitable quantitative cross-
blocking assay uses
an ELISA-based approach to measure competition between antibodies or other
binding agents in
terms of their binding to sclerostin.
BIACORE CROSS-BLOCKING ASSAY
The following generally describes a suitable Biacore assay for determining
whether an antibody or other binding agent cross-blocks or is capable of cross-
blocking
according to the invention. For convenience reference is made to two
antibodies, but it will be
appreciated that the assay can be used with any of the sclerostin binding
agents described herein.
The Biacore machine (for example the Biacore 3000) is operated in line with
the manufacturer's
recommendations.
Thus in one cross-blocking assay, sclerostin is coupled to a CM5 Biacore chip
using standard amine coupling chemistry to generate a sclerostin-coated
surface. Typically 200-
800 resonance units of sclerostin would be coupled to the chip (an amount that
gives easily
115

CA 02947080 2016-11-01
measurable levels of binding but that is readily saturable by the
concentrations of test reagent
being used).
The two antibodies (termed A* and B*) to be assessed for their ability to
cross-
block each other are mixed at a one to one molar ratio of binding sites in a
suitable buffer to
create the test mixture. When calculating the concentrations on a binding site
basis the molecular
weight of an antibody is assumed to be the total molecular weight of the
antibody divided by the
number of sclerostin binding sites on that antibody.
The concentration of each antibody in the test mix should be high enough to
readily saturate the binding sites for that antibody on the sclerostin
molecules captured on the
Biacore chip. The antibodies in the mixture are at the same molar
concentration (on a binding
basis) and that concentration would typically be between 1.00 and 1.5
micromolar (on a binding
site basis).
Separate solutions containing antibody A* alone and antibody B* alone are also
prepared. Antibody A* and antibody B* in these solutions should be in the same
buffer and at
the same concentration as in the test mix.
The test mixture is passed over the sclerostin-coated Biacore chip and the
total
amount of binding recorded. The chip is then treated in such a way as to
remove the bound
antibodies without damaging the chip-bound sclerostin. Typically this is done
by treating the
chip with 30 mM HC1 for 60 seconds.
The solution of antibody A* alone is then passed over the sclerostin-coated
surface and the amount of binding recorded. The chip is again treated to
remove all of the bound
antibody without damaging the chip-bound sclerostin.
The solution of antibody B* alone is then passed over the sclerostin-coated
surface and the amount of binding recorded.
The maximum theoretical binding of the mixture of antibody A* and antibody B*
is next calculated, and is the sum of the binding of each antibody when passed
over the
sclerostin surface alone. If the actual recorded binding of the mixture is
less than this theoretical
maximum then the two antibodies are cross-blocking each other.
Thus, in general, a cross-blocking antibody or other binding agent according
to
the invention is one which will bind to sclerostin in the above Biacore cross-
blocking assay such
that during the assay and in the presence of a second antibody or other
binding agent of the
invention the recorded binding is between 80% and 0.1% (e.g. 80% to 4%) of the
maximum
theoretical binding, specifically between 75% and 0.1% (e.g. 75% to 4%) of the
maximum
theoretical binding, and more specifically between 70% and 0.1% (e.g. 70% to
4%) of maximum
116

CA 02947080 2016-11-01
theoretical jiist defined above) of the two antibodies or binding
agents in
combination.
The Biacore assay described above is a primary assay used to determine if
antibodies or other binding agents cross-block each other according to the
invention. On rare
occasions particular antibodies or other binding agents may not bind to
sclerostin coupled via
amine chemistry to a CM5 Biacore chip (this usually occurs when the relevant
binding site on
sclerostin is masked or destroyed by the coupling to the chip). In such cases
cross-blocking can
be determined using a tagged version of Sclerostin, for example N-terminal His-
tagged
Sclerostin (R & D Systems, Minneapolis, MN, USA; 2005 cat# 1406-ST-025). In
this particular
format, an anti-His antibody would be coupled to the Biacore chip and then the
His-tagged
Sclerostin would be passed over the surface of the chip and captured by the
anti-His antibody.
The cross blocking analysis would be carried out essentially as described
above, except that after
each chip regeneration cycle, new His-tagged sclerostin would be loaded back
onto the anti-His
antibody coated surface. In addition to the example given using N-terminal His-
tagged
Sclerostin, C-terminal His-tagged sclerostin could alternatively be used.
Furthermore, various
other tags and tag binding protein combinations that are known in the art
could be used for such
a cross-blocking analysis (e.g. HA tag with anti-HA antibodies; FLAG tag with
anti-FLAG
antibodies; biotin tag with streptavidin).
ELISA-BASED CROSS-BLOCKING ASSAY
The following generally describes an ELISA assay for determining whether an
anti-sclerostin antibody or other sclerostin binding agent cross-blocks or is
capable of cross-
blocking according to the invention. For convenience, reference is made to two
antibodies (Ab-
X and Ab-Y), but it will be appreciated that the assay can be used with any of
the sclerostin
binding agents described herein.
The general principal of the assay is to have an anti-solerostin antibody
coated
onto the wells of an ELISA plate. An excess amount of a second, potentially
cross-blocking,
anti-sclerostin antibody is added in solution (i.e. not bound to the ELISA
plate). A limited
amount of sclerostin is then added to the wells. The coated antibody and the
antibody in
solution compete for binding of the limited number of sclerostin molecules.
The plate is washed
to remove sclerostin that has not been bound by the coated antibody and to
also remove the
second, solution phase antibody as well as any complexes formed between the
second, solution
phase antibody and sclerostin. The amount of bound sclerostin is then measured
using an
117

CA 02947080 2016-11-01
appropriate sclerostin detection reagent. An antibody in solution that is able
to cross-block the
coated antibody will be able to cause a decrease in the number of sclerostin
molecules that the
coated antibody can bind relative to the number of sclerostin molecules that
the coated antibody
can bind in the absence of the second, solution phase, antibody.
This assay is described in more detail further below for Ab-X and Ab-Y. In the
instance where Ab-X is chosen to be the immobilized antibody, it is coated
onto the wells of the
ELISA plate, after which the plates are blocked with a suitable blocking
solution to minimize
non-specific binding of reagents that are subsequently added. An excess amount
of Ab-Y is
then added to the ELISA plate such that the moles of Ab-Y sclerostin binding
sites per well are
at least 10 fold higher than the moles of Ab-X sclerostin binding sites that
were used, per well,
during the coating of the ELISA plate. Sclerostin is then added such that the
moles of sclerostin
added per well are at least 25-fold lower than the moles of Ab-X sclerostin
binding sites that
were used for coating each well. Following a suitable incubation period the
ELISA plate is
washed and a sclerostin detection reagent is added to measure the amount of
sclerostin
specifically bound by the coated anti-sclerostin antibody (in this case Ab-X).
The background
signal for the assay is defined as the signal obtained in wells with the
coated antibody (in this
case Ab-X), second solution phase antibody (in this case Ab-Y), sclerostin
buffer only (i. e. no
sclerostin) and sclerostin detection reagents. The positive control signal for
the assay is defined
as the signal obtained in wells with the coated antibody (in this case Ab-X),
second solution
phase antibody buffer only (i.e. no second solution phase antibody),
sclerostin and sclerostin
detection reagents. The ELISA assay needs to be run in such a manner so as to
have the positive
control signal be at least 6 times the background signal.
To avoid any artifacts (e.g. significantly different affinities between Ab-X
and
Ab-Y for sclerostin) resulting from the choice of which antibody to use as the
coating antibody
and which to use as the second (competitor) antibody, the cross-blocking assay
needs to be run
in two formats:
1) format 1 is where Ab-X is the antibody that is coated onto the ELISA plate
and Ab-Y is
the competitor antibodythat is in solution
and
2) format 2 is where Ab-Y is the antibody that is coated onto the ELISA plate
and Ab-X is
the competitor antibody that is in solution.
118

CA 02947080 2016-11-01
Ab-X ati3Ab-Y are defined as cross-blocking if, either in format 1 or in
format 2,
the solution phase anti-sclerostin antibody is able to cause a reduction of
between 60% and
100%, specifically between 70% and 100%, and more specifically between 80% and
100%, of
the sclerostin detection signal (i.e. the amount of sclerostin bound by the
coated antibody) as
compared to the sclerostin detection signal obtained in the absence of the
solution phase anti-
sclerostin antibody (i.e. the positive control wells).
An example of such an ELISA-based cross blocking assay can be found in
Example 7 ("ELISA-based cross-blocking assay").
CELL BASED NEUTRALIZATION ASSAY
Mineralization by osteoblast-lineage cells in culture, either primary cells or
cell
lines, is used as an in vitro model of bone formation. Mineralization takes
from about one to six
weeks to occur beginning with the induction of osteoblast-lineage cell
differentiation by one or
more differentiation agents. The overall sequence of events involves cell
proliferation,
differentiation, extracellular matrix production, matrix maturation and
finally deposition of
mineral, which refers to crystallization and/or deposition of calcium
phosphate. This sequence
of events starting with cell proliferation and differentiation, and ending
with deposition of
mineral is referred to herein as mineralization. Measurement of calcium
(mineral) is the output
of the assay.
MC3T3-E1 cells (Sudo H, Kodama H-A, Amagai Y, Yamamoto S, Kasai S.
1983. In vitro differentiation and calcification in a new clonal osteogenic
cell line derived from
newborn mouse calvaria. J. Cell Biol. 96:191-198) and subclones of the
original cell line can
form mineral in culture upon growth in the presence of differentiating agents.
Such subclones
include MC3T3-El-BF (Smith E, Redman R, Logg C, Coetzee G, Kasahara N, Frenkel
B. 2000.
Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle. J.
Biol. Chem.
275:19992-20001). For both the MC3T3-E1-BF subclone as well as the original
MC3T3-E1
cells, sclerostin can inhibit one or more of the sequence of events leading up
to and including
mineral deposition (i.e. sclerostin inhibits mineralization). Anti-sclerostin
antibodies that are
able to neutralize sclerostin's inhibitory activity allow for mineralization
of the culture in the
presence of sclerostin such that there is a statistically significant increase
in deposition of
calcium phosphate (measured as calcium) as compared to the amount of calcium
measured in the
sclerostin-only (i.e. no antibody) treatment group. The antibodies used in the
cell based
mineralization assay experiments shown in Figures 22, 23 and 24 have molecular
weights of
about 145 Kd and have 2 sclerostin binding sites per antibody molecule.
119

CA 02947080 2016-11-01
When running the assay with the goal of determining whether a particular anti-
sclerostin antibody or anti-sclerostin binding agent can neutralize sclerostin
(i.e., is a sclerostin
neutralizing antibody or derivative thereof, or is a sclerostin neutralizing
binding agent), the
amount of sclerostin used in the assay needs to be the minimum amount of
sclerostin that causes
at least a 70%, statistically significant, reduction in deposition of calcium
phosphate (measured
as calcium) in the sclerostin-only group, as compared to the amount of calcium
measured in the
no sclerostin group. An anti-sclerostin neutralizing antibody or an anti-
sclerostin neutralizing
binding agent is defined as one that causes a statistically significant
increase in deposition of
calcium phosphate (measured as calcium) as compared to the amount of calcium
measured in the
sclerostin-only (L e. no antibody, no binding agent) treatment group. To
determine whether an
anti-sclerostin antibody or an anti-sclerostin binding agent is neutralizing
or not, the amount of
anti-sclerostin antibody or anti-sclerostin binding agent used in the assay
needs to be such that
there is an excess of moles of sclerostin binding sites per well as compared
to the number of
moles of sclerostin per well. Depending on the potency of the antibody, the
fold excess that may
be required can be 24, 18, 12, 6, 3, or 1.5, and one of skill is familiar with
the routine practice of
testing more than one concentration of binding agent. For example, a very
potent anti-sclerostin
neutralizing antibody or anti-sclerostin neutralizing binding agent will be
able to neutralize
sclerostin even when there is less than a 6-fold excess of moles of sclerostin
binding sites per
well as compared to the number of moles of sclerostin per well. A less potent
anti-sclerostin
neutralizing antibody or anti-sclerostin neutralizing binding agent will be
able to neutralize
sclerostin only at a 12, 18 or 24 fold excess. Sclerostin binding agents
within this full range of
potencies are suitable as neutralizing sclerostin binding agents. Exemplary
cell based
mineralization assays are described in detail in Example 8.
Anti-sclerostin antibodies and derivatives thereof that can neutralize human
sclerostin, and sclerostin binding agents that can neutralize human sclerostin
may be of use in
the treatment of human conditions/disorders that are caused by, associated
with, or result in at
least one of low bone formation, low bone mineral density, low bone mineral
content, low bone
mass, low bone quality and low bone strength.
IN VIVO NEUTRALIZATION ASSAY
Increases in various parameters associated with, or that result from, the
stimulation of new bone formation can be measured as an output from in vivo
testing of
sclerostin binding agents in order to identify those binding agents that are
able to neutralize
sclerostin and thus able to cause stimulation of new bone formation. Such
parameters include
120

CA 02947080 2016-11-01
. =
VairiorlYgefUltarabbil MarkerS [e.g. osteocalcin, P1NP (n-terminal propeptide
of type 1
procollagen)], histomorphometric markers of bone formation (e.g. osteoblast
surface/bone
surface; bone formation rate/bone surface; tmbecular thickness), bone mineral
density, bone
mineral content, bone mass, bone quality and bone strength. A sclerostin
neutralizing binding
agent is defined as one capable of causing a statistically significant
increase, as compared to
vehicle treated animals, in any parameter associated with, or that results
from, the stimulation of
new bone formation. Such in vivo testing can be performed in any suitable
mammal (e.g.
mouse, rat, monkey). An example of such in vivo testing can be found in
Example 5 ("In vivo
testing of anti-sclerostin monoclonal antibodies").
Although the amino acid sequence of sclerostin is not 100% identical across
mammalian species (e.g. mouse sclerostin is not 100% identical to human
sclerostin), it will be
appreciated by one skilled in the art that a sclerostin binding agent that can
neutralize, in vivo,
the sclerostin of a certain species (e.g. mouse) and that also can bind human
sclerostin in vitro is
very likely to be able to neutralize human sclerostin in vivo. Thus, such a
human sclerostin
binding agent (e.g. anti-human sclerostin antibody) may be of use in the
treatment of human
conditions/disorders that are caused by, associated with, or result in at
least one of low bone
formation, low bone mineral density, low bone mineral content, low bone mass,
low bone
quality and low bone strength. Mice in which hom*ologous recombination had been
used to
delete the mouse sclerostin gene and insert the human sclerostin gene in its
place (i.e. human
sclerostin gene knock-in mice or human SOST knock-in mice) would be an example
of an
additional in vivo system.
Pharmaceutical compositions are provided, comprising one of the
above-described binding agents such as at least one of antibody Ab-A, Ab-B, Ab-
C, Ab-D and
Ab-1 toAb-24 to human sclerostin, along with a pharmaceutically or
physiologically acceptable
carrier, excipient, or diluent. Pharmaceutical compositions and methods of
treatment are
disclosed in copending Application Serial No. 10/868,497, filed June 16, 2004,
which claims
priority to Serial No. 60/478,977.
The development of suitable dosing and treatment regimens for using the
particular compositions described herein in a variety of treatment regimens,
including e.g.,
subcutaneous, oral, parenteral, intravenous, intranasal, and intramuscular
administration and
formulation, is well known in the art, some of which are briefly discussed
below for general
purposes of illustration.
121

CA 02947080 2016-11-01
In certain applications, the pharmaceutical compositions disclosed herein may
be
delivered via oral administration to an animal. As such, these compositions
may be formulated
with an inert diluent or with an assimilable edible carrier, or they may be
enclosed in hard- or
soft-shell gelatin capsule, or they may be compressed into tablets, or they
may be incorporated
directly with the food of the diet.
In certain circ*mstances it will be desirable to deliver the pharmaceutical
compositions disclosed herein subcutaneously, parenterally, intravenously,
intramuscularly, or
even intraperitoneally. Such approaches are well known to the skilled artisan,
some of which
are further described, for example, in U.S. Patent No. 5,543,158; U.S. Patent
No. 5,641,515 and
U.S. Patent No. 5,399,363. In certain embodiments, solutions of the active
compounds as free
base or pharmacologically acceptable salts may be prepared in water suitably
mixed with a
surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared
in glycerol, liquid
polyethylene glycols, and mixtures thereof and in oils. Under ordinary
conditions of storage and
use, these preparations generally will contain a preservative to prevent the
growth of
microorganisms.
Illustrative pharmaceutical forms suitable for injectable use include sterile
aqueous solutions or dispersions and sterile powders for the extemporaneous
preparation of
sterile injectable solutions or dispersions (for example, see U.S. Patent No.
5,466,468). In all
cases the form must be sterile and must be fluid to the extent that easy
syringability exists. It
must be stable under the conditions of manufacture and storage and must be
preserved against
the contaminating action of microorganisms, such as bacteria and fungi. The
carrier can be a
solvent or dispersion medium containing, for example, water, ethanol, polyol
(e.g., glycerol,
propylene glycol, and liquid polyethylene glycol, and the like), suitable
mixtures thereof, and/or
vegetable oils. Proper fluidity may be maintained, for example, by the use of
a coating, such as
lecithin, by the maintenance of the required particle size in the case of
dispersion and/or by the
use of surfactants. The prevention of the action of microorganisms can be
facilitated by various
antibacterial and antifungal agents, for example, parabens, chlorobutanol,
phenol, sorbic acid,
thimerosal, and the like. In many cases, it will be preferable to include
isotonic agents, for
example, sugars or sodium chloride. Prolonged absorption of the injectable
compositions can be
brought about by the use in the compositions of agents delaying absorption,
for example,
aluminum monostearate and gelatin.
In one embodiment, for parenteral administration in an aqueous solution, the
solution should be suitably buffered if necessary and the liquid diluent first
rendered isotonic
122

CA 02947080 2016-11-01
with sufficient saline or glucose. These particular aqueous solutions are
especially suitable for
intravenous, intramuscular, subcutaneous and intraperitoneal administration.
In this connection,
a sterile aqueous medium that can be employed will be known to those of skill
in the art in light
of the present disclosure. For example, one dosage may be dissolved in 1 ml of
isotonic NaCI
solution and either added to 1000 ml of hypodermoclysis fluid or injected at
the proposed site of
infusion, (see for example, Remington's Pharmaceutical Sciences, 15th ed., pp.
1035-1038 and
1570-1580). Some variation in dosage will necessarily occur depending on the
condition of the
subject being treated. Moreover, for human administration, preparations will
of course
preferably meet sterility, pyrogenicity, and the general safety and purity
standards as required by
FDA Office of Biologics standards.
In another embodiment of the invention, the compositions disclosed herein may
be formulated in a neutral or salt form. Illustrative pharmaceutically-
acceptable salts include the
acid addition salts (formed with the free amino groups of the protein) and
which are formed with
inorganic acids such as, for example, hydrochloric or phosphoric acids, or
such organic acids as
acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free
carboxyl groups can
also be derived from inorganic bases such as, for example, sodium, potassium,
ammonium,
calcium, or ferric hydroxides, and such organic bases as isopropylamine,
trimethylamine,
histidine, procaine and the like. Upon formulation, solutions will be
administered in a manner
compatible with the dosage formulation and in such amount as is
therapeutically effective.
The carriers can further comprise any and all solvents, dispersion media,
vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic
and absorption delaying
agents, buffers, carrier solutions, suspensions, colloids, and the like. The
use of such media and
agents for pharmaceutical active substances is well known in the art. Except
insofar as any
conventional media or agent is incompatible with the active ingredient, its
use in the therapeutic
compositions is contemplated. Supplementary active ingredients can also be
incorporated into
the compositions. The phrase "pharmaceutically-acceptable" refers to molecular
entities and
compositions that do not produce an allergic or similar untoward reaction when
administered to
a human.
In certain embodiments, liposomes, nanocapsules, microparticles, lipid
particles,
vesicles, and the like, are used for the introduction of the compositions of
the present invention
into suitable host cells/organisms. In particular, the compositions of the
present invention may
be formulated for delivery either encapsulated in a lipid particle, a
liposome, a vesicle, a
123

CA 02947080 2016-11-01
. .
nanosphere, or a nanoparticle or the like. Alternatively, compositions of the
present invention
can be bound, either covalently or non-covalently, to the surface of such
carrier vehicles.
The formation and use of liposome and liposome-like preparations as potential
drug carriers is generally known to those of skill in the art (see for
example, Lasic, Trends
Biotechnol. 16(7):307-21, 1998; Takakura, Nippon Rinsho 56(3):691-95, 1998;
Chandran et al,
Indian J. Exp. Biol. 35(8):801-09, 1997; Margalit, Crit Rev. Then Drug Carrier
Syst 12(2-
3):233-61, 1995; U.S. Patent No. 5,567,434; U.S. Patent No. 5,552,157; U.S.
Patent No.
5,565,213; U.S. Patent No. 5,738,868 and U.S. Patent No. 5,795,587),
The use of liposomes does not appear to be
associated with autoimmune responses or unacceptable toxicity after systemic
delivery. In
certain embodiments, liposomes are formed from phospholipids that are
dispersed in an aqueous
medium and spontaneously form multilamellar concentric bilayer vesicles (also
termed
multilamellar vesicles (MLVs)).
Alternatively, in other embodiments, the invention provides for
pharmaceutically-acceptable nanocapsuk formulations of the compositions of the
present
invention. Nanocapsules can generally entrap compounds in a stable and
reproducible way (see,
for example, Quintanar-Guerrero et al., Drug Dev. Ind. Pharm. 24(12):1113-28,
1998). To
avoid side effects due to intracellular polymeric overloading, such uItrafine
particles (sized
around 0.11.1m) may be designed using polymers able to be degraded in vivo.
Such particles can
be made as described, for example, by Couvreur et al., Crit. Rev. Then Drug
Carrier Syst
5(1):1-20, 1988; zur Muhlen at al., Bun J. Pharm. Biopharm. 45(2):149-55,
1998; Zambaux et
al., J. Controlled Release 50(1-3):31-40, 1998; and U.S. Patent No. 5,145,684.
In addition, pharmaceutical compositions of the present invention may be
placed
within containers, along with packaging material that provides instructions
regarding the use of
such pharmaceutical compositions. Generally, such instructions will include a
tangible
expression describing the reagent concentration, as well as within certain
embodiments, relative
amounts of excipient ingredients or diluents (e.g., water, saline or PBS) that
May be necessary to
reconstitute the pharmaceutical composition.
The dose administered may range from 0.01 mg/kg to 100 mg/kg of body weight.
As will be evident to one of skill in the art, the amount and frequency of
administration will
depend, of course, on such factors as the nature and severity of the
indication being treated, the
124

CA 02947080 2016-11-01
asired response, the Condition of the patient, and so forth. Typically, the
compositions may be
administered by a variety of techniques, as noted above.
Increases in bone mineral content and/or bone mineral density may be
determined directly through the use of X-rays (e.g., Dual Energy X-ray
Absorptometry or
"DEXA"), or by inference through the measurement of 1) markers of bone
formation and/or
osteoblast activity, such as, but not limited to, osteoblast specific alkaline
phosphatase,
osteocalcin, type 1 procollagen C' propeptide (PICP), total alkaline
phosphatase (see Comier,
Cum Opin. in Rheu. 7:243(1995)) and serum procollagen 1 N-terminal propeptide
(P1NP)
and/or 2) markers of bone resorption and/or osteoclast activity including, but
not limited to,
pyridinoline, deoxypryridinoline, N-telopeptide, urinary hydroxyproline,
plasma tartrate-
resistant acid phosphatases, and galactosyl hydroxylysine; (see Cornier, id),
serum TRAP 5b
(tartrate-resistant acid phosphatase isoform 5b) and serum cross-linked C-
telopeptide (sCTXI).
The amount of bone mass may also be calculated from body weights or by using
other methods
(see Guinness-Hey, Metab. Bone Dis. Relat Res. 5:177-181, 1984).Animals and
particular
animal models are used in the art for testing the effect of the compositions
and methods of the
invention on, for example, parameters of bone loss, bone resorption, bone
formation, bone
strength or bone mineralization that mimic conditions of human disease such as
osteoporosis and
osteopenias. Examples of such models include the ovariectomized rat model
(Kalu, D.N., The
ovariectomized rat model of postmenopausal bone loss. Bone and Mineral 15:175-
192 (1991);
Frost, H.M. and Jee, W.S.S. On the rat model of human osteopenias and
osteoporosis. Bone and
Mineral 18:227-236 (1992); and Jee, W.S.S. and Yao, W., Overview: animal
models of
osteopenia and osteoporosis. J. Musculoskel. Neuron. Interact. 1:193-207
(2001)).
Particular conditions which may be treated by the compositions of the present
invention include dysplasias, wherein growth or development of bone is
abnormal and a wide
variety of causes of osteopenia, osteoporosis and bone loss. Representative
examples of such
conditions include achondroplasia, cleidocranial dysostosis, enchondromatosis,
fibrous
dysplasia, Gaucher's Disease, hypophosphatemic rickets, Marfan's syndrome,
multiple
hereditary exotoses, neurofibromatosis, osteogenesis imperfecta,
osteopetrosis, osteopoikilosis,
sclerotic lesions, pseudoarthrosis, and pyogenic osteomyelitis, periodontal
disease, anti-epileptic
drug induced bone loss, primary and secondary hyperparathyroidism, familial
hyperparathyroidism syndromes, weightlessness induced bone loss, osteoporosis
in men,
postmenopausal bone loss, osteoarthritis, renal osteodystrophy, infiltrative
disorders of bone,
oral bone loss, osteonecrosis of the jaw, juvenile Paget's disease,
melorheostosis, metabolic
bone diseases, mastocytosis, sickle cell anemia/disease, organ transplant
related bone loss,
125

CA 02947080 2016-11-01
kidhey tfahsplait relatarbone loss, systemic lupus erythematosus, ankylosing
spondylitis,
epilepsy, juvenile arthritides, thalassemia, mucopolysaccharidoses, fabry
disease, turner
syndrome, Down Syndrome, Klinefelter Syndrome, leprosy, Perthes' Disease,
adolescent
idiopathic scoliosis, infantile onset multi-system inflammatory disease,
Winchester Syndrome,
Menkes Disease, Wilson's Disease, ischemic bone disease (such as Legg-Calve-
Perthes disease,
regional migratory osteoporosis), anemic states, conditions caused by
steroids, glucocorticoid-
induced bane loss, heparin-induced bone loss, bone marrow disorders, scurvy,
malnutrition,
calcium deficiency, idiopathic osteopenia or osteoporosis, congenital
osteopenia or osteoporosis,
alcoholism, chronic liver disease, postmenopausal state, chronic inflammatory
conditions,
rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis,
inflammatory colitis,
Crohn's disease, oligomenorrhea, amenorrhea, pregnancy, diabetes mellitus,
hyperthyroidism,
thyroid disorders, parathyroid disorders, Cushing's disease, acromegaly,
hypogonadism,
immobilization or disuse, reflex sympathetic dystrophy syndrome, regional
osteoporosis,
osteomalacia, bone loss associated with joint replacement, HIV associated bone
loss, bone loss
associated with loss of growth hormone, bone loss associated with cystic
fibrosis, fibrous
dysplasia, chemotherapy associated bone loss, tumor induced bone loss, cancer-
related bone
loss, hormone ablative bone loss, multiple myeloma, drug-induced bone loss,
anorexia nervosa,
disease associated facial bone loss, disease associated cranial bone loss,
disease associated bone
loss of the jaw, disease associated bone loss of the skull, and bone loss
associated with space
travel. Further conditions relate to bone loss associated with aging,
including facial bone loss
associated with aging, cranial bone loss associated with aging, jaw bone loss
associated with
aging, and skull bone loss associated with aging.
Compositions of the present invention may also be useful for improving
outcomes in orthopedic procedures, dental procedures, implant surgery, joint
replacement, bone
grafting, bone cosmetic surgery and bone repair such as fracture healing,
nonunion healing,
delayed union healing and facial reconstruction. One or more compositions may
be
administered before, during and/or after the procedure, replacement, graft,
surgery or repair.
The invention also provides a diagnostic kit comprising at least one anti-
sclerostin binding agent according to the present invention. The binding agent
may be an
antibody. In addition, such a kit may optionally comprise one or more of the
following:
(1) instructions for using the one or more binding agent(s) for screening,
dikrnosis, prognosis, therapeutic monitoring or any combination of these
applications;
126

CA 02947080 2016-11-01
I'Ma""11613181ed binding partner to the anti-sclerostin binding agent(s);
(3) a solid phase (such as a reagent strip) upon which the anti-selerostin
binding
agent(s) is immobilized; and
(4) a label or insert indicating regulatory approval for screening,
diagnostic,
prognostic or therapeutic use or any combination thereof.
If no labeled binding partner to the binding agent(s) is provided, the binding
agent(s) itself can
be labeled with one or more of a detectable marker(s), e.g. a
chemiluminescent, enzymatic,
fluorescent, or radioactive moiety.
The following examples are offered by way of illustration, and not by way of
limitation.
EXAMPLES
EXAMPLE 1
Recombinant Expression of Sclerostin
Recombinant human sclerostin/SOST is commercially available from R&D
Systems (Minneapolis, MN, USA; 2006 cat# 1406-ST-025). Additionally,
recombinant mouse
sclerostin/SOST is commercially available from R&D Systems (Minneapolis, MN,
USA; 2006
cat# 1589-ST-025).
Alternatively, the different species of sclerostin can be expressed
transiently in
serum-free suspension adapted 293T or 293EBNA cells. Transfections can be
performed as 500
mL or 1L cultures. The following reagents and materials are available from
Gibco BRL (now
Invitrogen, Carlsbad, CA). Catalog numbers are listed in parentheses: serum-
free DMEM
(21068-028); DMEM/F12 (3:1) (21068/11765); 1X Insulin-Transferrin-Selenium
Supplement
(51500-056); 1X Pen Strep Glut (10378-016); 2mM 1-Glutamine (25030-081); 20 mM
HEPES
(15630-080); 0.01% Pluronic F68 (24040-032). Briefly, the cell inoculum (5.0-
10.0 X 105
cells/mL X culture volume) is centrifuged at 2,500 RPM for 10 minutes at 4 C
to remove the
conditioned medium.
The cells are resuspended in serum-free DMEM and centrifuged again at 2,500
RPM for 10 minutes at 4 C. After aspirating the wash solution, the cells are
resuspended in
growth medium [DMEM/F12 (3:1) + lx Insulin-Transferrin-Selenium Supplement +
1X Pen
Strep Glut + 2mM L-Olutamine + 20 mM HEPES + 0.01% Pluronic F68] in a 1L or 3L
spinner
flask culture. The spinner flask culture is maintained on magnetic stir plate
at 125 RPM which
is placed in a humidified incubator maintained at 37 C and 5% CO2. The
mammalian
127

CA 02947080 2016-11-01
expression plasiiiid"DNX (e.g. pcDNA3.1, pCEP4, Invitrogen Life Technologies,
Carlsbad,
CA), containing the complete coding region (and stop codon) of sclerostin with
a Kozak
consensus sequence (e.g., CCACC) directly 5' of the start site ATG, is
complexed to the
transfection reagent in a 50 mL conical tube.
The DNA-transfection reagent complex can be prepared in 5-10% of the final
culture volume in serum-free DMEM or OPTI-MEM. The transfection reagents that
can be used
for this purpose include X-tremeGene RP-1539 (Roche Applied Science,
Indianapolis, IN),
FuGene6 (Roche Applied Science, Indianapolis, IN), Lipofectamine 2000
(Invitrogen,
Carlsbad, CA) and 293fectin (Invitrogen, Carlsbad, CA). 1-5 p.g plasmid DNA/mL
culture is
first added to serum-free DMEM, followed by 1-5 pi transfection reagent/mL
culture. The
complexes can be incubated at room temperature for approximately 10-30 minutes
and then
added to the cells in the spinner flask. The transfection/expression can be
performed for 4-7
days, after which the conditioned medium (CM) is harvested by centrifugation
at 4,000 RPM for
60 minutes at 4 C.
EXAMPLE 2
PURIFICATION OF RECOMBINANT SCLEROSTIN
Recombinant sclerostin was purified from mammalian host cells as follows. All
purification processes were carried out at room temperature. One purification
scheme was used
to purify various species of sclerostin, including murine and human
sclerostin. The purification
scheme used affinity chromatography followed by cation exchange
chromatography.
Heparin Chromatography
The mammalian host cell conditioned medium (CM) was centrifuged in a
Beckman J6-M1 centrifuge at 4000 rpm for lhour at 4 C to remove cell debris.
The CM
supernatant was then filtered through a sterile 0.2 pin filter. (At this point
the sterile filtered CM
may be optionally stored frozen until purification.) If the CM was frozen, it
was thawed at the
following temperatures, or combination thereof: 4 C, room temperature or warm
water.
Following thawing the CM was filtered through a sterile 0.2 pm filter and
optionally
concentrated by tangential flow ultrafiltration (TFF) using a 10 kD molecular
weight cut-off
membrane. The CM concentrate was filtered through a sterile 0.2 p.m filter and
then loaded onto
a Heparin High Performance (Heparin HP) column (GE Healthcare, formerly
Amersham
128

CA 02947080 2016-11-01
'`"13TUdi'efid'esyntOilibrhfet1 in PBS. Alternatively, the filtered CM
supernatant may be loaded
directly onto the Heparin HP column equilibrated in PBS.
After loading, the Heparin HP column was washed with PBS until the absorbance
at 280 nm of the flow-through returned to baseline (i.e., absorbance measured
before loading
CM supernatant). The sclerostin was then eluted from the column using a linear
gradient from
150 mM to 2M sodium chloride in PBS. The absorbance at 280 nm of the eluate
was monitored
and fractions containing protein were collected. The fractions were then
assayed by Coomassie-
stained SDS-PAGE to identify fractions containing a polypeptide that migrates
at the size of
glycosylated sclerostin. The appropriate fractions from the column were
combined to make the
Heparin HP pool.
Cation Exchange Chromatography
The sclerostin eluted from the Heparin HP column was further purified by
cation
exchange chromatography using SP High Performance (SPHP) chromatography media
(GE
Healthcare, formerly Amersham Biosciences). The Heparin HP pool was buffer
exchanged into
PBS by dialysis using 10,000 MWCO membranes (Pierce Slide-A-Lyzer). The
dialyzed
Heparin HP pool was then loaded onto an SPHP column equilibrated in PBS. After
loading, the
column was washed with PBS until the absorbance at 280 nm of the flow-through
returned to
baseline. The sclerostin was then eluted from the SPHP column using a linear
gradient from 150
mM to 1 M sodium chloride in PBS. The absorbance at 280 urn of the eluate was
monitored and
the eluted sclerostin was collected in fractions. The fractions were then
assayed by Coomassie-
stained SDS-PAGE to identify fractions containing a polypeptide that migrates
at the size of
glycosylated sclerostin. The appropriate fractions from the column were
combined to make the
SPHP pool.
Formulation
Following purification, the SPHP pool was formulated in PBS by dialysis using
10,000 MWCO membranes (Pierce Slide-A-Lyzer). If concentration of sclerostin
was
necessary, a centrifugal device (Amicon Centricon or Centriprep) with a 10,000
MWCO
membrane was used. Following formulation the sclerostin was filtered through a
sterile 0.2 i.tm
filter and stored at 4 C or frozen.
EXAMPLE 3
PEPTIDE BINDING ELISA
129

CA 02947080 2016-11-01
A series of overlapping peptides (each peptide being approximately 20-25 amino
acids
long) were synthesized based on the known amino acid sequence of rat
sclerostin (SEQ ID
NO:98). The peptides were designed such that they all contained a reduced
cysteine residue; an
additional cysteine was included at the C-terminus of each peptide which did
not already contain
one in its sequence. This enabled the peptides to be bound to the assay plates
by covalent
coupling, using commercially available sulfhydryl binding plates (Costar), at
a concentration of
1 g/ml, in phosphate buffered saline (PBS: pH 6.5) containing 1 mM EDTA.
Following
incubation for 1 hour at room temperature, the plates were washed three times
with PBS
containing 0.5% Tween 20. The plates were blocked by incubation with a PBS
solution
containing 0.5% fish skin gelatin (Sigma) for 30 minutes at room temperature
and then washed
three times in PBS containing 0.5% Tween 20.
Antibodies to be tested were diluted to 1i.tg/m1 in PBS containing 0.5%
fish skin gelatin and incubated with the peptide-coated plates for 1 hour at
room temperature.
Excess antibody was removed by three washes with PBS, 0.5% Tween 20. The
plates were then
incubated with an appropriate secondary antibody conjugated to horseradish
peroxidase (diluted
appropriately in PBS containing 0.5% Tween 20) and capable of binding to the
antibody of
interest. The plates were then washed three times: once with PBS containing
0.5% Tween 20,
and twice with PBS. Finally the plates were incubated with a horseradish
peroxidase
chromogenic substrate (TMB-Stable Stop, RDI) for 5 minutes at room
temperature, the color
development was stopped with acid, and the plates' optical density measured at
450nm.
Materials
Costar's Sulfthydryl Binding Plates (VWR # 29442-278)
Coating Buffer: 1XPBS PH 6.5 + 1mM EDTA
Blocking Buffer: 1X PBS +0,5% Fish Skin Gelatin (PBS from CS; FSG from Sigma #
G
7765)
Wash Buffer: 1X PBS + 0.5% Tween 20
Rat Sclerostin peptides
Antibody Samples: Transient Ab, Purified recombinant Ab, rabbit Serum, etc.
Appropriate secondary Ab: Goat-anti-Rabbit/Mouse-HRP (Jackson Immuno
Research,115-
036-072)
TMB-Stable Stop (RDI# RDI-TMBSX-1L)
130

CA 02947080 2016-11-01
0.5MHCI "
Methods were as follows:
1. Coat plates with 100111/well of rat sclerostin peptide diluted in 1XPBS
PH 6.5 + 1mM
EDTA at li.tg/ml. Incubate plates 1 hour at room temperature. (Plates should
be used
within 30 minutes of opening).
2. Wash plates 3X with wash buffer.
3. Block plates with 200u1/well blocking buffer. Incubate plates 30 minutes at
room temp.
4. Repeat washing as described in (2).
5. Incubate plates with 5Oul/well of samples diluted in blocking buffer -
Serum titers
starting at 1:100; Transient Recombinant Ab use neat; Purified recombinant Ab
use at
1i.tg/m1 (all samples run in duplicates). Incubate plates lh at room temp.
6. Wash plates as described in (2).
7. Incubate plates with 50 1/well of appropriate Secondary Antibody (HRP
labeled) diluted
1:1600 in Blocking Buffer. Incubate plates 1 hour at room temperature.
8. Wash plates 1X wash buffer, 2x PBS
9. Incubate plates with 500/well of TMB, 5 minutes at room temp.
10. Stop reaction with 500/weIl 0.5M HC1.
11. Read plates at 450 nm wavelength.
The following peptides sequences were screened as described above:
QGWQAFKNDATEIIPGLREYPEPP(SEQ ID NO:82)
TEIIPGLREYPEPPQELENN (SEQ ID NO:83)
PEPPQELENNQTMNRAENGG (SEQ ID NO:84)
ENGGRPPHHPYDTKDVSEYS (SEQ ID NO:85)
CRELHYTRFVTDGP (SEQ ID NO:86)
CRELHYTRFVTDGPSRSAKPVTELV (SEQ ID NO:87)
CRSAKPVTELVSSGQSGPRARLL (SEQ ID NO:88)
CGPARLLPNAIGRVKWWRPNGPDFR (SEQ ID NO:89)
RAQRVQLLCPGGAAPRSRKV (SEQ ID NO:90)
PGGAAPRSRKVRLVAS (SEQ ID NO:91)
KRLTRFHNQSELKDFGPETARPQ (SEQ ID NO:92)
IPDRYAQRVQLLSPG0 (SEQ ID NO:93)
SELKDFGPETARPQKGRKPRPRAR (SEQ ID NO:94)
131

CA 02947080 2016-11-01
-KGRKPRPIZARGAINQAELENAY (SEQ ID NO:95)
PNAIGRVKWWRPNGPDFR (SEQ ID NO:96)
KWWRPNGPDFRCIPDRYRAQRV (SEQ ID NO:97).
A high-affinity neutralizing antibody (Ab-19) bound to two
overlapping peptide sequences: PNAIGRVKWWRPNGPDFR (SEQ ID NO:96) and
KWWRPNGPDFRCIPDRYRAQRV (SEQ ID NO:97).
This procedure allows the recognition of epitopes for antibodies that
react with apparent linear epitopes. Peptides that contain all or part of the
antibody binding site
will bind antibody and thus be detected.
EXAMPLE 4
IDENTIFICATION OF HUMAN SCLEROSTIN EPITOPES
Sclerostin structure
Mature form (signal peptide removed) human sclerostin is a 190 amino acid
protein (Figure 8). Figure 9 shows a schematic of the general structure of
sclerostin with an N-
terminal arm (from the N-terminal Q to Cysteinel) and a C-terminal arm (from
Cysteine8 to the
terminal Y). Sandwiched in between these two arms there is the cystine-knot
structure and three
loops which are designated Loop!, Loop2 and Loop 3. The four disulfide bonds
in sclerostin
are Cysl at sequence position 57 linked to Cys5 at sequence position 111
(referred to as C1-05),
Cys2 at sequence position 71 linked to Cys6 at sequence position 125 (referred
to as C2-C6),
Cys3 at sequence position 82 linked to Cys7 at sequence position 142 (referred
to as C3-C7),
Cys4 at sequence position 86 linked to Cys8 at sequence position 144 (referred
to as C4-C8).
The eight-membered ring structure is formed via C3-C7 and C4-C8 disulfide
bonding. This ring
structure, together with the G1-05 disulfide bond penetrating through the
ring, forms a typical
cystine-knot. C2-C6, which is not part of the cystine-knot, brings two large
loop structures, loop
1 (residues 57 to 82) and loop 3 (residues 111 to 142) close together. Loop 2
goes from C4
(residue 86) to C5 (residue 111).
Experimental
The general approach for characterizing the epitopes bound by anti-sclerostin
monoclonal antibodies involved fragmenting human Sclerostin into peptides with
different
proteases, determining the sequence of the various human sclerostin peptides,
isolating these
peptides and testing each of them for their ability to bind to a particular
monoclonal antibody
132

CA 02947080 2016-11-01
"Yiginni"YllikoMbigict "fiuman sclerostin peptide epitope competition binding
assay.". The
resulting data permitted the location of the binding epitope to be determined.
The peptide digests were subjected to HPLC peptide mapping; the individual
peaks were collected, and the peptides identified and mapped by matrix
assisted laser desorption
mass spectrometry (MALDI-MS) and electrospray ionization LC-MS (EST-LC-MS)
analyses
and/or by N-terminal sequencing. All HPLC analyses for these studies were
performed using a
reverse-phase C8 column (2.1 mm i.d. x 15 cm length). HPLC peptide mapping was
performed
with a linear gradient from 0.05% trifloroaeetic acid (mobile phase A) to 90%
acetonitrile in
0.05% trifuoroacetic acid. Columns were developed over 50 minutes at a flow
rate of 0.2
ml/min.
Trypsin and AspN Endoproteinase Digestions
Mature form human sclerostin was digested with trypsin, which cleaves after
arginine and lysine, or with AspN. About 200 p,g of sclerostin at 0.5-1.0
mg/ml was incubated
in PBS (pH 7.2) for 20 hrs at 37 C with 81,tg of either trypsin or AspN.
Trypsin digestion
HPLC chromatography of the trypsin digests yielded several major peaks
(Fig. 10A). Sequence analysis was conducted on the peptide peaks recovered
from HPLC after
trypsin digestion. On-line ESI LC-MS analysis of the peptide digest was also
performed to
determine the precise mass of the peptides that were separated by HPLC. The
identity of the
peptides present in the peptide peaks was thus determined (Fig. 11). Figure 13
shows the
alignment of various peptide sequences (T19.2, T20, T20.6, T21-22) along the
sclerostin
sequence. The number following each T (e.g., T19.2) reflects the retention
time. T19.2 contains
two peptides (one from loop 1 and one from loop 3) linked by the C2-C6
disulfide bond. T20
contains two peptides held together by the cystine-knot structure, with intact
loops 1 and 3 held
together by the C2-C6 disulfide and with most of loop 2 absent. T20.6 contains
four sequences
held together by the cystine-knot structure, but is missing part of loop 1 and
3 (the T19.2 part)
and is missing most of loop 2. T21-22 is almost identical to T20 but has 3
additional amino
acids in the loop 2 region.
AspN Digestion
HPLC chromatography of the AspN digests yielded several major peaks
(Fig. 10B). Sequence analysis was conducted on the peptide peaks recovered
from HPLC. On-
133

CA 02947080 2016-11-01
'Tine nitt-indarihlYsig"of the peptide digest was also performed to determine
the precise mass
of the peptides that were separated by HPLC. The identity of the peptides
present in the peptide
peaks from the AspN digestion was thus determined (Fig. 12). Figure 14 shows
the alignment
of various peptide sequences (AspN14.6, AspN18.6, AspN22.7-23.5) along the
sclerostin
sequence. The number following each AspN (e.g. AspN18.6) reflects the
retention time.
AspN14.6 contains three short peptides from both the N- and C-terminal arms of
sclerostin,
while AspN18.6 is a larger peptide from the N-terminal arm of sclerostin.
AspN22.7-23.5
contains a single peptide fragment of 104 amino acids the encompasses all
eight cysteines (the
four disulfide bonds), the cystine-knot and all of loops 1, 2 and 3.
The strategy for characterizing the epitopes was to use these various trypsin
and
AspN generated human sclerostin peptides and determine which peptides could
still be bound by
the various Antibodies (Ab-A, Ab-B, Ab-C and Ab-D). Specifically this was
tested in a
Biacore-based "human sclerostin peptide epitope competition binding assay"
where the binding
of a particular monoclonal antibody to human sclerostin immobilized on the
Biacore chip was
determine in the presence or absence of each of the various isolated trypsin
and AspN HPLC
peptide fractions. In the absence of any competing peptides, the particular
monoclonal antibody
was able to bind the human sclerostin on the chip and produce a resonance
unit, RU, response.
Preincubation of the particular monoclonal antibody with intact human
sclerostin in solution,
followed by testing of binding to the chip, demonstrated that the binding of
the Mab to human
sclerostin in solution preventedthe binding of the Mab to the human sclerostin
on the chip, thus
validating the general principal of this competition assay.
This general procedure was repeated individually for each peptide. A robust RU

response was taken to indicate that the particular peptide being tested could
not bind the Mab in
solution (hence the Mab was free to bind the human sclerostin that had been
immobilized on the
chip). Conversely, the absence of a robust RU response indicated that the Mab
was able to bind
the sclerostin peptide in solution. These binding patterns, couple with the
known identity of the
various sclerostin peptides, were used to determine the epitopes of sclerostin
that were bound by
anti-sclerostin antibodies Ab-A, Ab-B, Ab-C and Ab-D.
BIACORE-BASED HUMAN SCLEROSTIN PEPTIDE EPITOPE COMPETITION BINDING ASSAY
Preparation of human sclerostin surface:
Immobilization of mature form human sclerostin to a BIAcore sensor chip (CM5)
surface was performed according to manufacturer's instructions. Briefly,
carboxyl groups on the
134

CA 02947080 2016-11-01
sensor chip stiffabe vkit activated by injecting 60 pL of a mixture
containing 0.2 M N-ethyl-
N'-(dimethylaminopropyl) carbodiimide (EDC) and 0.05 M N-hydroxysuccinimide
(NHS).
Human sclerostin was diluted in 10 mM sodium acetate, pH 4.0 at a
concentration of 20 ttg/mL
followed by injecting over the activated CM5 surface. Excess reactive groups
on the surfaces
were deactivated by injecting 60 pL of 1 M ethanolamine. Final immobilized
levels were ¨
5000 resonance units (RU) for the human sclerostin surface. A blank, mock-
coupled reference
surface was also prepared on the sensor chips.
Binding specificity analysis:
1X Phosphate-buffered saline without calcium chloride or magnesium chloride
was from Gibcoanvitrogen, Carlsbad, CA. Bovine serum albumin, fraction V, IgG-
free was
from Sigma-Aldrich, St. Louis, MO. Each Mab (2 nM) was separately incubated
with 20 nM
human sclerostin or a particular human sclerostin peptide (note: there are 3
unlinked peptides in
AspN14.6) in sample buffer (1X PBS + 0.005% P-20 + 0.1 mg/mL BSA) before
injection over
the immobilized human sclerostin surface. The flow rate for sample injection
was 5 pL/min
followed by surface regeneration using 1 M NaCl in 8 mM Glycine, pH 2.0 at 30
p,L/min for 30
seconds. The data was analyzed using BIAevaluation 3.2, and is presented in
Figure 15 (Ab-A),
Figure 16 (Ab-B), Figure 17 (Ab-C) and Figure 18 (Ab-D).
Loop 2 and 120.6 cpitopes:
The sclerostin peptide binding pattern for two representative antibodies (Ab-A

and Ab-B) were virtually identical (Fig. 15 and Fig. 16) and showed that both
of these
Antibodies could only bind the AspN22.7-23.5 peptide. The unique difference
between
AspN22.7-23.5 and all the other sclerostin peptides is that AspN22.7-23.5
contains an intact
loop 2. This shows that Ab-A and Ab-B bind the loop 2 region of sclerostin
thus defining the
loop 2 epitope (Fig. 19A). The sclerostin peptide binding pattern for Ab-C and
Ab-D were
virtually identical to each other (Fig. 17 and Fig. 18) but completely
distinct from that found for
Ab-A and Ab-B. Of the peptides tested in this Example, the most diminutive
peptide that Ab-C
and Ab-D could bind to was the 120.6 peptide. This result defines the T20.6
epitope (Fig. 19B).
Protease protection assay:
The general principle of this assay is that binding of a Mab to sclerostin can
result
in protection of certain specific protease cleavage sites and this information
can be used to
determine the region of sclerostin to where the Mab binds.
135

CA 02947080 2016-11-01
"120.6 derivative 1 (cystipp-knot +4 arms)" epitope:
Figure 20 shows the HPLC peptide maps for a human sclerostin Ab-D complex
(Fig 20A: human sclerostin was preincubated at a 1:1 molar ratio with Ab-D
prior to digestion
with trypsin as described above) and human sclerostin alone (Fig 20B: human
sclerostin was
digested with trypsin as described above). The peptide peaks of 119.2 and
T20.6 in Figure 20A
showed a clear reduction in their respective peak height, as compared to
Figure 20B. This
reduction in peak heights was accompanied by an increase in peak height for
peptides T20 and
121-22. These data indicate that basic amino acid residues in loop 1 and loop
3, which in the
absence of Ab-D were cleaved by trypsin to generate peptides 119.2 and 120.6,
were resistant to
cleavage by trypsin when Ab-D was prebound to sclerostin. The presence of
T20,120.6 and
T21-22 indicates that loop 2 was still cleaved efficiently when Ab-D was
prebound to sclerostin.
These data indicate that Ab-D bound on the loop 1 and loop 3 side of the 120.6
epitope thus
defining the smaller "T20.6 derivative 1 (cystine-knot + 4 arms)" epitope
shown in Figure 21.
EXAMPLE 5
IN VIVO TESTING OF ANTI-SCLEROSTIN MONOCLONAL ANTIBODIES IN MICE
Four week-old BDF1 male mice were obtained from Charles River Laboratories
(Raleigh, NC) and housed in clean caging, five animals per cage. Room
temperature was
maintained between 68 and 72 F, and relative humidity was maintained between
34 and 73%.
The laboratory housing the cages had a 12-hour light/dark cycle and met all
AAALAC
specifications. Clinical observations of all mice on study occurred once
daily.
Purified anti-sclerostin monoclonal antibodies (Ab-A Fig.1; Ab-B Fig.2; Ab-C
Fig.3; Ab-D Fig.4) were diluted in sterile Dulbecco's phosphate buffered
saline. Mice were
injected with anti-sclerostin Antibodies or PBS vehicle subcutaneously at 21
gl per gram body
weight, two times per week (Monday and Thursday) at 25 mg/kg. Human PTH (1-34)
was
diluted in PTH buffer (0.001 N HC1, 0.15 M NaC1, 2% BSA), and dosed
subcutaneously at 21 gl
per gram body weight Eve times per week (Monday, Tuesday, Wednesday, Thursday,
Friday) at
100 jig/kg as a positive control (Figures 5 and 6). Number of mice per group
was N=5 in Fig 5
and 6, and N=6 in Figure 7.
PIXImus in vivo Bone Densitometry
136

CA 02947080 2016-11-01
Bbne mineral density (BMD) was determined weekly at the proximal tibial
metaphysis and lumbar vertebrae by peripheral Dual Energy X-ray Absorptometry
(pDEXA)
with the PIXImus2 system from GE/Lunar Medical Systems, Madison, WI. A 25mm2
region of
interest (ROI) was placed to include the proximal articular surface, the
epiphysis, and the
proximal end on the metaphysis of the tibia. A region of interest (ROT) was
placed to include
the lumbar vertebrae (Ll-L5). The proximal tibia and lumbar regions were
analyzed to
determine total bone mineral density. Group means were reported Standard
Deviation and
compared to the vehicle treatment group for statistical analysis.
Statistical analysis
Statistical analysis was performed with a Dunnett's and Tukey-Kramer (using
MS Excel and JMP v. 5Ø for the 13MD data). Group means for each data set
were considered
significantly different when the P value was less than 0.05 (P <0.05).
Sclerostin neutralizing activity of antibodies
The statistically significant increases in BMD as compared to vehicle seen for

each of Ab-A (Figure 5), Ab-B (Figure 5), Ab-C (Figure 6) and Ab-D (Figure 7)
demonstrates
that these four antibodies are sclerostin neutralizing antibodies. Furthermore
this data shows
that, for anti-sclerostin antibodies that bind mouse sclerostin, treatment and
analysis of mice as
described above can be used to identify sclerostin neutralizing antibodies.
EXAMPLE 6
SCREENING ASSAY FOR ANTIBODIES THAT BLOCK BINDING OF AN ANTIBODY
TO HUMAN SCLEROSTIN
Human sclerostin was coupled to a CM5 Biacore chip using standard amine
coupling chemistry to generate a sclerostin coated surface. 300 resonance
units of sclerostin
were coupled to the surface.
The antibodies to be tested were diluted to a concentration of 200ug/m1 in HBS-

EP buffer (being 10 mM HEPES pH 7.4, 150 mM NaC1, 3 mM EDTA, 0.005% (v/v)
Surfactant
P20) and then mixed in a one to one molar ratio (on a binding site basis) to
generate the test
mixture. This test mixture thus contained each antibody at a concentration of
10Oug/m1 (1.3um
on a binding site basis). Separate solutions containing each of the antibodies
in the test mix
alone were also prepared. These solutions contained the individual antibodies
in 11:13S-EP buffer
at a concentration of 10Oug/m1 (1.3um on a binding site basis).
137

CA 02947080 2016-11-01
'141: ailie test mixture was passed over the sclerostin-coated chip at a flow
rate
of 10 pi/min and the amount of binding recorded. The chip was then treated
with two 60
second pulses of 30 mM HC1 to remove all of the bound antibody. A solution
containing only
one of the antibodies of the test mixture (at 1.31,IM in the same buffer as
the test mixture on a
binding site basis) was then passed over the chip in the same manner as the
test mixture and the
amount of binding recorded. The chip was again treated to remove all of the
bound antibody and
finally a solution containing the other antibody from the test mixture alone
(at 1.3 M in the
same buffer as the test mixture on a binding site basis) was passed over the
chip and the amount
of binding recorded.
10, The table below show the results from cross-blocking assays on a
range of
different antibodies. The values in each square of the table represent the
amount of binding (in
RU) seen when the antibodies (at 1.3 ,M on a binding site basis) or buffer
indicated in the top
row of the table were mixed with the antibodies (at 1.3uM on a binding site
basis) or buffer
indicated in the first column of the table.
Buffer Ab-4 Ab-13 Ab-A Ab-3 Ab-19
Buffer -0.5 693 428.5 707.3 316.1 649.9
Ab-4 687.7 795.1 101'8.2 860.5 869.3 822:5
Ab-13 425.6 1011.3 442.7 1108.4 431. 1042.4
Ab-iA 692.4 833.1 1080.4 = 73815 946.2 868.1
Ab-3 305.5 845.1 428.2
952.2 344.4 895.7
A:b-19 618:1 788.6 1022.5 80.3 891.5 658.7
Using the mean binding value (in RU) for each combination of antibodies in the
above table (since each combination appears twice) it is possible to calculate
the percentage of
the theoretical binding shown by each combination of antibodies. The
theoretical binding being
calculated as the sum of the average values for the components of each test
mixture when
assayed alone (i.e., antibody and buffer).
Buffer - Ab-4 Ab-13 Ab-A Ab-3 Ab-19
Buffer
Ab-4 90.75 60.45 = 85.4 60.75
Ab-13 96:9 58.0 97.6
Ab-A 93.5 65.0
Ab.-3 .94.4
Ab-19
From the above data it is clear that Ab-4, Ab-A and Ab-19 cross-block each
138

CA 02947080 2016-11-01
other. Similarly Ab-13 and Ab-3 cross block each other.
EXAMPLE 7
ELISA-BASED CROSS-BLOCKING ASSAY
Liquid volumes used in this example would be those typically used in 96-well
plate ELISAs (e.g. 50-200 l/well). Ab-X and Ab-Y, in this example are assumed
to have
molecular weights of about 145 Kd and to have 2 sclerostin binding sites per
antibody molecule.
An anti-sclerostin antibody (Ab-X) is coated (e.g. 50 of 1 pg/m1) onto a 96-
well ELISA plate
[e.g. Corning 96 Well EIA/RIA Flat Bottom Microplate (Product # 3590), Corning
Inc., Acton,
MA] for at least one hour. After this coating step the antibody solution is
removed, the plate is
washed once or twice with wash solution (e.g., PBS and 0.05% Tween 20) and is
then blocked
using an appropriate blocking solution (e.g., PBS, 1% BSA, 1% goat serum and
0.5% Tween 20)
and procedures known in the art. Blocking solution is then removed from the
ELISA plate and a
second anti-sclerostin antibody (Ab-Y), which is being tested for it's ability
to cross-block the
coated antibody, is added in excess (e.g. 50 1 of 10 g/m1) in blocking
solution to the appropriate
wells of the ELISA plate. Following this, a limited amount (e.g. 50 1 of 10
ng/ml) of sclerostin
in blocking solution is then added to the appropriate wells and the plate is
incubated for at least
one hour at room temperature while shaking. The plate is then washed 2-4 times
with wash
solution. An appropriate amount of a sclerostin detection reagent [e.g.,
biotinylated anti-
sclerostin polyclonal antibody that has been pre-complexed with an appropriate
amount of a
streptavidin-horseradish peroxidase (HRP) conjugate] in blocking solution is
added to the
ELISA plate and incubated for at least one hour at room temperature. The plate
is then washed
at least 4 times with wash solution and is developed with an appropriate
reagent [e.g. HRP
substrates such as TMB (colorimetric) or various HRP luminescent substrates].
The background
signal for the assay is defined as the signal obtained in wells with the
coated antibody (in this
case Ab-X), second solution phase antibody (in this case Ab-Y), sclerostin
buffer only (i.e. no
sclerostin) and sclerostin detection reagents. The positive control signal for
the assay is defined
as the signal obtained in wells with the coated antibody (in this case Ab-X),
second solution
phase antibody buffer only (i.e. no second solution phase antibody),
sclerostin and sclerostin
detection reagents. The ELISA assay needs to be run in such a manner so as to
have the positive
control signal be at least 6 times the background signal.
To avoid any artifacts (e.g. significantly different affinities between Ab-X
and
Ab-Y for sclerostin) resulting from the choice of which antibody to use as the
coating antibody
and which to use as the second (competitor) antibody, the cross-blocking assay
needs to be run
139

CA 02947080 2016-11-01
in two formats:
1) format 1 is where Ab-X is the antibody that is coated onto the
ELISA plate and
Ab-Y is the competitor antibody that is in solution
and
2) format 2 is where Ab-Y is the antibody that is coated onto the ELISA
plate and
Ab-X is the competitor antibody that is in solution.
Ab-X and Ab-Y are defined as cross-blocking if, either in format 1 or in
format 2,
the solution phase anti-sclerostin antibody is able to cause a reduction of
between 60% and
100%, specifically between 70% and 100%, and more specifically between 80% and
100%, of
the sclerostin detection signal (i.e. the amount of sclerostin bound by the
coated antibody) as
compared to the sclerostin detection signal obtained in the absence of the
solution phase anti-
sclerostin antibody (i.e. the positive control wells).
In the event that a tagged version of sclerostin is used in the ELISA, such as
a N-
terminal His-tagged Sclerostin (R&D Systems, Minneapolis, MN, USA; 2005 cat#
1406-ST-
025) then an appropriate type of sclerostin detection reagent would include an
HR,13 labeled anti-
His antibody. In addition to using N-terminal His-tagged Sclerostin, one could
also use C-
terminal His-tagged Sclerostin. Furthermore, various other tags and tag
binding protein
combinations that are known in the art could be used in this ELISA-based cross-
blocking assay
(e.g., HA tag with anti-HA antibodies; FLAG tag with anti-FLAG antibodies;
biotin tag with
streptavidin).
EXAMPLE 8
CELL BASED MINERALIZATION ASSAY FOR IDENTIFYING AGENTS
ABLE TO ANTAGONIZE SCLEROSTIN ACTIVITY
Introduction
Mineralization by osteoblast-lineage cells in culture, either primary cells or
cell
lines, is used as an in vitro model of bone formation. Mineralization takes
from about one to six
weeks to occur beginning with the induction of osteoblast-lineage cell
differentiation by one or
more differentiation agents. The overall sequence of events involves cell
proliferation,
differentiation, extracellular matrix production, matrix maturation and
finally deposition of
mineral, which refers to crystallization and/or deposition of calcium
phosphate. This sequence
of events starting with cell proliferation and differentiation, and ending
with deposition of
mineral is referred to herein as mineralization. Measurement of calcium
(mineral) is the output
of the assay.
140

CA 02947080 2016-11-01
Deposition of mineral has a strong biophysical characteristic, in that once
mineral
"seeds" begin to form, the total amount of mineral that will be deposited in
the entire culture can
sometimes be deposited quite rapidly, such as within a few days thereafter.
The timing and
extent of mineral deposition in culture is influenced, in part, by the
particular osteoblast-lineage
cells/cell-line being used, the growth conditions, the choice of
differentiation agents and the
particular lot number of serum used in the cell culture media. For osteoblast-
lineage cell/cell-
line mineralization cultures, at least eight to fifteen serum lots from more
than one supplier
should be tested in order to identify a particular serum lot that allows for
mineralization to take
place.
MC3T3-E1 cells (Sudo H et al., In vitro differentiation and calcification in a
new
clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol.
96:191-198) and
subclones of the original cell line can form mineral in culture upon growth in
the presence of
differentiating agents. Such subclones include MC3T3-E1 -BF (Smith E, Redman
R, Logg C,
Coetzee G, Kasahara N, Frenkel B. 2000. Glucocorticoids inhibit developmental
stage-specific
osteoblast cell cycle. J Biol Chem 275:19992-20001).
Identification of Sclerostin Neutralizing Antibodies
MC3T3-E l -BF cells were used for the mineralization assay. Ascorbic acid and
B-glycerophosphate were used to induce MC3T3-E1-BF cell differentiation
leading to mineral
deposition. The specific screening protocol, in 96-well format, involved
plating cells on a
Wednesday, followed by seven media changes (as described further below) over a
12-day period
with most of the mineral deposition taking place in the final approximately
eighteen hours (e.g.
Sunday night through Monday). For any given treatment, 3 wells were used
(N=3). The
specific timing, and extent, of mineral deposition may vary depending, in
part, on the particular
serum lot number being used. Control experiments will allow such variables to
be accounted
for, as is well know in the art of cell culture experimentation generally.
In this assay system sclerostin inhibited one or more of the sequence of
events
leading up to and including mineral deposition (i.e., sclerostin inhibited
mineralization). Anti-
sclerostin antibodies that were able to neutralize sclerostin's inhibitory
activity allowed for
mineralization of the culture in the presence of sclerostin such that there
was a statistically
significant increase in deposition of calcium phosphate (measured as calcium)
as compared to
the amount of calcium measured in the sclerostin-only (i.e., no antibody)
treatment group. For
statistical analysis (using MS Excel and JMP) a 1-way-ANOVA followed by
Dunnett's
comparison was used to determine differences between groups. Group means for
each data set
141

CA 02947080 2016-11-01
were considered significantly different when the P value was less than 0.05 (P
<0.05). A
representative result from running this assay is shown in Figure 22. In the
absence of
recombinant mouse sclerostin, the sequence of events leading up to and
including mineral
deposition proceeded normally. Calcium levels in each treatment group are
shown as means
Standard Error of the Mean (SEM). In this exemplary experiment calcium levels
from the
calcium assay were ¨31 lag/mi. However, addition of recombinant mouse
sclerostin caused
inhibition of mineralization, and calcium was reduced by ¨ 85%. Addition of
anti-sclerostin
monoclonal antibody Ab-19 or Ab-4 along with the recombinant sclerostin
resulted in a
statistically significant increase in mineral deposition, as compared to the
sclerostin-only group,
because the inhibitory activity of sclerostin was neutralized by either
antibody. The results from
this experiment indicate that Ab-19 and Ab-4 are sclerostin neutralizing
monoclonal antibodies
(Mabs).
Figure 23 shows a very similar result using recombinant human sclerostin and
two humanized anti-sclerostin Mabs. Figure 24 also shows a very similar result
using
recombinant human sclerostin and mouse and humanized anti-sclerostin Mabs as
indicated.
The antibodies used for the experiments shown in Fig 22, 23 and 24 have
molecular weights of about 145 Kd and have 2 sclerostin binding sites per
antibody molecule.
A detailed MC3T3-E1-BF cell culture protocol is described below.
29 Reagents and Medias
Reagents Company Catalog #
Alpha-MEM ,Gibco-Invitrogen 12571-048
Ascorbic acid Sigma A4544
Beta-glycerophosphate Sigma 06376
100X PenStrepGlutamine Gibeo-Invitrogen 10378-016
Dimethylsulphoxide (DMSO) Sigma 05879 or 02650
Fetal bovine serum (FBS) Cansera CS-008-500 (lot # SF50310)
or Fetal bovine serum (FBS) TerraCell Int. CS-008-1000A (lot # SF-20308)
Alpha-MEM is usually manufactured with a 1 year expiration date. Alpha-MEM
that was not
older than 6-months post-manufacture date was used for the cell culture.
Expansion Medium (Alpha-MEM/10%FBS/PenStrepGlu ) was prepared as follows:
142

CA 02947080 2016-11-01
=A 500 ml bottle of FBS was thawed and filter sterilized through a 0.22 micron
filter.
100 mls of this FBS was added to 1 liter of Alpha-MEM followed by the addition
of 10 mls of
100x PenStrepGlutamine. Unused FBS was aliquoted and refrozen for later use.
Differentiation Medium (A1pha-MEM/10%FBS/PenStrepG1u, + 50 g/ml ascorbic
acid, + 10
mM beta-glycerophosphate) was prepared as follows:
100 mls of Differentiation Medium was prepared by supplementing 100 mls of
Expansion
Medium with ascorbic acid and beta-glycerophosphate as follows:
Stock cone Volume Final Conc.
(see below)
Ascorbic acid 10 mg/ml 0.5 mls 100 ug/m1 (5Oug/m1+ 50 g/m1)
13-glyeerophosphate 1 M 1.0 mls 10 mM
Differentiation Medium was made by supplementing Expansion Medium only on
the day that the Differentiation media was going to be used for cell culture.
The final
concentration of ascorbic acid in Differentiation medium is 100 gig/ml because
Alpha-MEM
already contains 50 g/m1 ascorbic acid. Ascorbic acid stock solution (10
mg/m1) was made and
aliquoted for freezing at -80 C. Each aliquot was only used once (i.e. not
refrozen). Beta-
stock solution (1 M) was made and aliquoted for freezing at -20 C. Each
aliquot was frozen and thawed a maximum of 5 times before being discarded.
Cell Culture for expansion of MC3T3-El-BF cells.
Cell culture was performed at 37 C and 5% CO2. A cell bank was generated for
the purposes of screening for sclerostin neutralizing antibodies. The cell
bank was created as
follows:
One vial of frozen MC3T3-E1-BF cells was thawed by agitation in a 37 C water
bath. The thawed cells were put into 10 mls of Expansion Medium (Alpha-
MEM/10%FBS/PenStrepG1u) in a 50 ml tube and gently spun down for 5 minutes.
The cells
were then resuspended in 4 mls of Alpha-MEM/10%FBS/PenStrepGlu. After
determining the
number of cells using trypan blue and hemacytometer, 1 x 106 cells were plated
in 50 mls
Alpha-MEM/10%FBS/PenStrepGlu media in one T175 flask.
When this passage was confluent (at approximately 7 days), the cells were
143

CA 02947080 2016-11-01
trypsinized with trypsin/EDTA (0.05% Trypsin; 0.53 mM EDTA), gently spun down
for 5
minutes and then resuspended in 5 mls Alpha-MEM/10%FBS/PenStrepG1u. After
determining
the number of cells using trypan blue and hemacytometer, cells were plated at
1 x 106 cells in 50
mls Alpha-MEM/10%FBS/PenStrepOlu media per one T175 flask. The number of T175
flasks
used for plating at this point depended upon the total cell number available
and the desired
number of flasks that were to be taken forward to the next passage. Extra
cells were frozen
down at 1-2x106 live cells/ml in 90%FBS/10%DMSO.
When this passage was confluent (about 3-4 days), the cells were trypsinized
with
trypsin/EDTA (0.05% Trypsin; 0.53 mM EDTA), gently spun down for 5 minutes and
then
resuspended in 5 mls Alpha-MEM/10%FBS/PenStrepGlu. After determining the
number of
cells using trypan blue and hemacytometer, cells were plated at 1 x 106 cells
in 50 mls Alpha-
MEM/10%FBS/PenStrepGlu media per one T175 flask. The number of T175 flasks
used for
plating at this point depended upon the total cell number available and the
desired number of
flasks that were to be taken forward to the next passage. Extra cells were
frozen down at 1-
2x106 live cells/m1 in 90%FBS/10%DMSO.
When this passage was confluent (about 3-4 days), the cells were trypsinized
with
trypsin/EDTA (0.05% Trypsin; 0.53 mM EDTA), gently spun down for 5 minutes and
then
resuspended in 5 mls Alpha-MEM/10%FBS/PenStrepG1u. After determining the
number of
cells using trypan blue and hemacytometer, cells were plated at 1 x 106 cells
in 50 mls Alpha-
MEM/10%FBS/PenStrepGlu media per one T175 flask. The number of T175 flasks
used for
plating at this point depended upon the total cell number available and the
desired number of
flasks that were to be taken forward to the next passage. Extra cells were
frozen down at 1-
2x106 live cells/ml in 90%FBS/10%DMSQ.
When this passage was confluent (about 3-4 days), the cells were trypsinized
with
trypsin/EDTA (0.05% Trypsin; 0.53 mM EDTA), gently spun down for 5 minutes and
then
resuspended in 5 mls Alpha-MEM/10%Fl3S/PenStrepG1u. After determining the
number of
cells using trypan blue and hemacytometer, the cells were frozen down at 1-
2x106 live cells/ml
in 90%FBS/10%DMSO. This "final passage" of frozen cells was the passage that
was used for
the screening assay.
Cell Culture for mineralizing MC3T3-E1-BF cells.
Cell culture was performed at 37 C and 5% CO2. It is desirable to minimize
temperature and % CO2 fluctuations during the mineralization cell culture
procedure. This can
144

CA 02947080 2016-11-01
be achieved by minimizing the time that plates spend out of the incubator
during feeding and
also by minimizing the number of times the incubator door is opened and closed
during the
mineralization cell culture procedure. In this regard having a tissue culture
incubator that is
dedicated exclusively for the mineralization cell culture (and thus not opened
and closed more
than is necessary) can be helpful.
An appropriate number of "final passage" vials prepared as described above
were
thawed by agitation in a 37 C water bath. The thawed cells were put into 10
mls of Expansion
Medium (Alpha-MEM/10%FBS/PenStrepG1u) in a 50 ml tube and gently spun down for
5
minutes. The cells were then resuspended in 4 mls of Alpha-
MEM/10%FBS/PenStrepG1u.
After determining the number of cells by trypan blue and hemacytometer, 2500
cells were plated
in 200 microliters of Expansion media per well on collagen I coated 96-well
plates (Becton
Dickinson Labware, cat # 354407).
To avoid a mineralization plate-edge effect, cells were not plated in the
outermost
row/column all the way around the plate. Instead 200 microliters of PBS was
added to these
wells.
Exemplary cell culture procedure
In the following procedure, the starting day for plating the cells is
indicated to be
a Wednesday. If a different day of the week is used as the starting day for
plating the cells, that
day will trigger the daily schedule for removing and adding media during the
entire process as
indicated below. For example, if the cells are plated on a Tuesday, media
should not be
removed and added on the first Friday and Saturday, nor on the second Friday
and Saturday.
With a Tuesday start, the plates would be prepared for the calcium assay on
the final Sunday.
Cells were plated on a Wednesday at 2500 cells in 200 I of Expansion media.
On Thursday all of the Expansion media was removed and 200 I of
Differentiation Media was
added.
On Friday 100 I of media was removed and 100 I of fresh Differentiation
Media was added.
On Monday 100 I of media was removed and 100 I of fresh Differentiation
Media was added.
On Tuesday 100 pi of media was removed and 100 1 of fresh Differentiation
Media was added.
On Wednesday 100 1 of media was removed and 100 I of fresh Differentiation
Media was
added.
On Thursday 100 I of media was removed and 100 I of fresh Differentiation
Media was
added.
145

CA 02947080 2016-11-01
On Friday 100 I of media was removed and 100 I of fresh Differentiation
Media was added.
On the following Monday plates were prepared for the calcium assay as follows:
Plates were washed once with 10 mM Tris, HC1 pH 7-8.
Working under a fume hood, 200 I of 0.5 N HC1 was added per well. Plates were
then frozen
at -80 C.
Just prior to measuring calcium, the plates were freeze-thawed twice, and then

trituration with a multichannel pipette was used to disperse the contents of
the plate. The
contents of the plate was then allowed to settle at 4 C for 30 minutes at
which point an
appropriate amount of supernatant was removed for measuring calcium using a
commercially
available calcium kit. An exemplary and not-limiting kit is Calcium (CPC)
Liquicolor, Cat. No.
0150-250, Stanbio Laboratory, Boerne, TX.
In this cell based assay, sclerostin inhibits one or more of the sequence of
events
leading up to and including mineral deposition (i.e. sclerostin inhibits
mineralization). Thus, in
experiments where sclerostin was included in the particular cell culture
experiment, the
recombinant sclerostin was added to the media starting on the first Thursday
and every feeding
day thereafter. In cases where an anti-sclerostin monoclonal antibody (Mab)
was being tested
for the ability to neutralize sclerostin, i.e. allow for mineralization by
neutralizing sclerostin's
ability to inhibit mineralization, the Mab was added to the media starting on
the first Thursday
and every feeding day thereafter. According to the protocol, this was
accomplished as follows:
the Mab was preincubated with the recombinant sclerostin in Differentiation
media for 45-60
minutes at 37 C and then this media was used for feeding the cells.
Described above is a 12-day mineralization protocol for MC3T3-E1-BF cells.
Using the same reagents and feeding protocol, the original MC3T3-E1 cells
(Sudo H, Kodama
H-A, Amagai Y, Yamamoto S, Kasai S. 1983. In vitro d(fferentiation and
calcification in a new
clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol
96:191-198) which
we obtained from the RIKEN Cell Bank (RCB 1126, RIKEN BioResource Center 3-1-1

Koyadai,Tsukuba-shi, Ibaraki 305-0074 Japan) took longer to mineralize (20
days total for
mineralization) than the MC3T3-E1-BF cells. Mineralization of the original
MC3T3-E1 cells
was inhibited by recombinant sclerostin and this inhibition was blocked using
a sclerostin
neutralizing antibody.
EXAMPLE 9
ANTI-SCLEROSTIN ANTIBODY PROTECTS FROM INFLAMMATION-INDUCED BONE LOSS IN THE
CD4
146

CA 02947080 2016-11-01
CD45R13111 TRANSFER MODEL OF COLITIS IN SCID MICE
Summary of model
Injection of the CD45RBhigh subset of CD4+ T cells into C.B-17 scid mice
results
in chronic intestinal inflammation with characteristics similar to those of
human inflammatory
bowel disease (IBD). Diarrhoea and wasting disease is noted 3-5 weeks after
cell transfer with
severe leukocyte infiltration into the colon accompanied by epithelial cell
hyperplasia and
granuloma formation. C.B-17 scid mice which receive the reciprocal subset of
CD4+ cells, those
which express CD45RBI", do not exhibit colitis and have a weight gain
indistinguishable from
uninjected scid mice. In addition to colitis symptoms, the CD4+ CD45RBhigh T
cell transfer
model of colitis is accompanied by a reduction in bone mineral density (BMD),
thought to be
primarily through inflammatory mechanisms rather than dietary malabsorption
(Byrne, F. R. et
al., Gut 54:78-86, 2005).
Induction of colitis and inflammation-induced bone loss
Spleens were taken from female balb/c mice and disrupted through a 70pm cell
strainer. The CD4+ population was then enriched by negative selection with
Dynabeads using
antibodies against 13220, MAC-1, CD8 and I-Ad. The enriched population was
then stained with
FITC conjugated anti-CD4 and PE conjugated anti-CD45RB and fractionated into
CD4+CD45RBhigh and CD4+CD45Re' populations by two-color sorting on a Moflo
(Dakocytomation). The CD45RBhigh and CD45RBI`' populations were defined as the
brightest
staining 40% and the dullest staining 20% of CD4+ cells respectively. 5 x 105
cells were then
injected i.p. into C.13-17 scid mice on day 0 and the development of colitis
was monitored
through the appearance of soft stools or diarrhoea and weight loss. Bone
mineral density
measurements were taken at the termination of the study (day 88).
Effect of anti-Sclerostin treatment on colitis symptoms and BMD
Ab-A IgG was dosed at 10mg/kg s.c. from the day prior to CD4+CD45RBhigh cell
transfer and compared with mice which received the negative control antibody
101.4 also dosed
at 10mg/kg s.c.. The antibodies were dosed weekly thereafter. A group of mice
which received
non-pathogenic CD4+CD45R131' cells and were dosed with 10mg/kg 101.4 was
studied as a
control. At the termination of the study (day 88) the bone mineral density was
measured and
147

CA 02947080 2016-11-01
sections of the colon taken for analysis of cell infiltration and assessment
of histological
damage.
a) No effect on colitis symptoms
Typical colitis symptoms such as weight loss and infiltration of inflammatory
cells into the colon were unaffected by treatment with Ab-A. Similarly there
was no
improvement of histological damage to the colon after treatment with Ab-A.
b) Inhibition of inflammation-induced loss of bone mineral density.
On day 88 after transfer of cells into C.B-17 scid mice, the bone mineral
density
was measured (total BMD, vertebrae BMD and femur BMD). In comparison to
control mice
which received CD4+CD45Rew non-pathogenic cells, mice which received CD4+
CD45R13high
'T cells and the negative control antibody 101.4 had reduced bone mineral
density, as shown in
Figure 25. In contrast, no reduction in BMD was noted after treatment with Ab-
A. Total,
vertebrae and femur measurements of BMD were significantly higher in mice
receiving CD4+
CD45RBhigh T cells and treated with Ab-A than mice receiving CD4+ CD45R13high
T cells and
treated with 101.4 (P<0.001 by Bonferroni multiple comparison test).
EXAMPLE 10
KINEXA-BASED DETERMINATION OF AFFINITY (KD) OF ANTI-SCLEROSTIN ANTIBODIES FOR
HUMAN
SCLEROSTIN
The affinity of several anti-sclerostin antibodies to human sclerostin was
assessed by a solutio
equilibrium binding analysis using KinExA(2) 3000 (Sapidyne Instruments Inc.,
Boise, ID). For these
measurements, Reacti-Gel 6x beads (Pierce, Rockford, IL) were pre-coated with
40 ig/m1 human
sclerostin in 50 mM Na2CO3, pH 9.6 at 4 C overnight. The beads were then
blocked with 1 mg/ml
BSA in 1 M Tris-HC1, pH 7.5 at 4 C for two hours. 10 pM, 30 pM, or 100 pM of
the antibody was
mixed with various concentrations of human sclerostin, ranging in
concentration from 0.1 pM to 1 111µ,
and equilibrated at room temperature for over 8 hours in PBS with 0.1 mg/ml
BSA and 0.005% P20.
The mixtures were then passed over the human sclerostin coated beads. The
amount of bead-bound
anti-sclerostin antibody was quantified using fluorescent Cy5-labeled goat
anti-mouse-IgG or
fluorescent Cy5-labeled goat anti-human-IgG antibodies (Jackson Immuno
Research, West Grove, P1
for the mouse or human antibody samples, respectively. The amount of
fluorescent signal measured
was proportional to the concentration of free anti-sclerostin antibody in each
reaction mixture at
148

CA 02947080 2016-11-01
equilibrium. The dissociation equilibrium constant (KO was obtained from
nonlinear regression of thi
competition curves using a n-curve one-site hom*ogeneous binding model provided
in the KinExA Pro
software. Results of the KinEx,A assays for the selected antibodies are
summarized in the table below.
Antibodies Antigen KD (pM) 95% confidence interval
Ab-13 Human Sclerostin 0.6 0.4- 0.8 pM
Ab-4 Human Sclerostin 3 1.8 - 4 pM
Ab-19 Human Sclerostin 3 1.7 - 4 pM
Ab-14 Human Sclerostin 1 0.5 -2 pM
Ab-5 Human Sclerostin 6 4.3 - 8 pM
Ab-23 Human Sclerostin 4 2.1 - 8 pM
EXAMPLE 11
BIACORE METHOD FOR DETERMINING THE AFFINITY OF HUMANISED ANTI-SCLEROSTIN
ANTIBODIES
FOR HUMAN SCLEROSTIN.
The BlAcore technology monitors the binding between biomolecules in real time
and
without the requirement for labelling. One of the interactants, termed the
ligand, is either
immobilised directly or captured on the immobilised surface while the other,
termed the analyte,
flows in solution over the captured surface. The sensor detects the change in
mags on the sensor
surface as the analyte binds to the ligand to form a complex on the surface.
This corresponds to
the association process. The dissociation process is monitored when the
analyte is replaced by
buffer. In the affinity BIAcore assay, the ligand is the anti-sclerostin
antibody and the analyte is
sclerostin.
Instrument
Biacore C 3000, Biacore AB, Uppsala, Sweden
Sensor chip
CM5 (research grade) Catalogue Number: BR-1001-14, Biacore AB, Uppsala,
Sweden. Chips
were stored at 4 C.
BIAnormalising solution
70% (w/w) Glycerol. Part of BIAmaintenance Kit Catalogue Number: BR-1002-51,
Biacore
AB, Uppsala, Sweden. The BIAmaintenance kit was stored at 4 C.
149

CA 02947080 2016-11-01
Amine Coupling Kit
Catalogue Number: BR-1000-50, Biacore AB, Uppsala, Sweden.
Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Made up to
75 mg/mL in
distilled water and stored in 200 !IL aliquots at ¨70 C.
N-Hydroxysuccinimide (NHS). Made up to 11.5 mg/mL in distilled water and
stored in 200
aliquots at ¨70 C.
1 M Ethanolamine hydrochloride-NaOH pH 8.5. Stored in 200 aliquots at ¨70
C.
Buffers
Running buffer for immobilising capture antibody: HBS-EP (being 0.01 M HEPES
pH 7.4, 0.15
M NaC1, 3 mM EDTA, 0.005 % Surfactant P20). Catalogue Number: 13R-1001-88,
Biacore AB,
Uppsala, Sweden. Buffer stored at 4 C.
Immobilisation buffer: Acetate 5.0 (being 10 mM sodium acetate pH 5.0).
Catalogue number:
BR-1003-51, Biacore AB, Uppsala, Sweden. Buffer stored at 4 C.
Running buffer for binding assay: HBS-EP (being 0.01 M HEPES pH 7.4, 0.15 M
NaCl, 3 mM
EDTA, 0.005 % Surfactant P20, Catalogue Number: BR-1001-88, Biacore AB,
Uppsala,
Sweden) with CM-Dextran added at 1 mg/mL (Catalogue Number 27560, Fluka
BioChemika,
Buchs, Switzerland). Buffer stored at 4 C.
Ligand capture
Affinipure F(ab')2 fragment goat anti-human IgG, Fe fragment specific. Jackson

ImmunoResearch Inc (Pennsylvania, USA) Catalogue number: 109-006-098. Reagent
stored at
4 C.
Ligand
Humanised anti-human sclerostin antibodies Ab5, Ab14 and Ab20.
Analyte
Recombinant human sclerostin. Aliquots stored at -70 C and thawed once for
each assay.
Regeneration Solution
150

CA 02947080 2016-11-01
40 mM HCI prepared by dilution with distilled water from an 11.6 M stock
solution (BDH,
Poole, England. Catalogue number: 101254H).
mM NaOH prepared by dilution with distilled water from a 50 mM stock solution.
Catalogue
number: BR-1003-58, Biacore AB, Uppsala, Sweden.
5
Assay Method
The assay format was capture of the anti-sclerostin antibody by immobilised
anti-human IgG-Fc
then titration of the sclerostin over the captured surface.
An example of the procedure is given below:
DIA (Biamolecular Interaction Analysis) was performed using a BlAcore 3000
(BlAcore AB).
Affinipure F(ab')2 Fragment goat anti-human IgG, Fc fragment specific (Jackson

ImmunoResearch) was immobilised on a CM5 Sensor Chip via amine coupling
chemistry to a
capture level of µ:-4000 response units (RUs). HBS-EP buffer (10mM HEPES pH
7.4, 0.15 M
NaCI, 3 mM EDTA, 0.005 % Surfactant P20, BlAcore AB) containing 1 mg/mL CM-
Dextran
was used as the running buffer with a flow rate of 100/min. A 10 41 injection
of the anti-
sclerostin antibody at ¨5 i.tg/mL was used for capture by the immobilised anti-
human IgG-Fc.
Antibody capture levels were typically 100-200 RU. Sclerostin was titrated
over the captured
anti-sclerostin antibody at various concentrations at a flow rate of 30 4/min.
The surface was
regenerated by two 10 i.L injections of 40 mM HC1, followed by a 5111,
injection of 5 mM
NaOH at a flowrate of 104/min.
Background subtraction binding curves were analysed using the BIAevaluation
software
(version 3.2) following standard procedures. Kinetic parameters were
determined from the
fitting algorithm.
The kinetic data and calculated dissociation constants are given in Table 2.
TABLE 2: Affinity of anti-sclerostin antibodies for sclerostin
Antibody ka (1/Ms) kd (1/s) Kd (pM)
Ab-5 1.78E+06 1.74E-04 97.8
Ab-14 3.30E+06 4.87E-06 L48
Al)-20 2.62E+06 4:16E-6 ¨ 15.8
ExAmPLE 12
151

CA 02947080 2016-11-01
IN VIVO TESTING OF ANTI-SCLERQSTIN MONOCLONAL ANTIBODIES IN CYNOMOLGOUS
MONKEYS
Thirty-three, approximately 3-5 year old, female eynomolgus monkeys (Macaca
fascicularis) were used in this 2- month study. The study contained 11 groups:
Group 1: vehicle (N=4)
Group 2: Ab-23 (N=2, dose 3 mg/kg)
Group 3: Ab-23 (N=3, dose 10 mg/kg)
Group 4: Ab-23 (N=3, dose 30 mg/kg)
Group 5: Ab-5 (N=3, dose 3 mg/kg)
Group 6: Ab-5 (N=3, dose 10 mg/kg)
Group 7: Ab-5 (N=3, dose 30 mg/kg)
Group 8: Ab-14 (N=3, dose 3 mg/kg)
Group 9: Ab-14 (N=3, dose 10 mg/kg)
Group 10: Ab-14 (N=3, dose 30 mg/kg)
Group 11: Parathyroid Hormone (1-34) [PTH (1-34)] (N=3, dose 10 ug/kg)
All dosing was subcutaneous. PTH (1-34) was dosed everyday, monoclonal
antibodies (Mobs)
were dosed twice (first dose at the beginning of the study and second dose at
the one month time
point). For assessment of bone parameters (e.g. bone mineral density) pQCT
(peripheral
quantitative computed tomography) and DXA (dual energy X-ray absorptiometry)
scans were
performed prior to the beginning of the study (to obtain baseline values) and
after a month (prior
to the second dose of Mab) and finally at the end of the study (2-month time
point) at which
point the monkeys were necropsied for further analysis (e.g. histomorphometric
analysis).
Animals were fluorochrome labeled (days 14, 24, 47, and 57) for dynamic
histomorphometry.
Serum was collected at various time points during the study [day 1 pre-dose
(the day of the first
Mab dose), day 1 twelve hours post-dose, day 2, day 3, day 5, day 7, day 14,
day 21, day 28, day
29 twelve hours post-dose (day 29 was the day of the second and final Mab
dose), day 30, day
31, day 33, day 35, day 42, day 49 and day 56].
Three bone-related serum biomarkers were measured using commercially available
kits:
Osteocalcin (0C) (DSL Osteocalcin Radioimmunoassay Kit; Diagnostic Systems
Laboratories,
Inc.,Webster, TX, USA)
N-terminal Propeptide of Type I Procollagen (P1NP) (P1NP Radioimmunoassay Kit;
Orion
Diagnostica, Espoo, Finland)
152

CA 02947080 2016-11-01
C7telopeptide :fraimenfsZf collagen type I al 0*i-is ,(sCTXI) (Serum
CrossLaps' ELISA;
Nordic Bioscience Diagnostics A/S, Herlev, Denmark).
pQCT and DXA scans yielded data on various bone parameters (including bone
mineral density (BMD) and bone mineral content) across numerous skeletal sites
(including
tibial metaphysis and diaphysis, radial metaphysis and diaphysis, femur neck,
lumbar vertebrae).
Analysis of this bone data (percent change from baseline for each animal) and
the anabolic (OC,
PINP) serum biomarker data (percent change from baseline for each animal)
revealed
statistically significant increases, versus the vehicle group, in some
parameters at some of the
time points and doses for each Mab. This bone parameter data, serum biomarker
data, as well as
the histomorphometric data, indicated that each of the 3 Mabs (Ab-23, Ab-5 and
Ab-14) was
able to neutralize sclerostin in cynomolgous monkeys. This activity was most
robust for Ab-23
and Ab-5, particularly at the highest dose (30 mg/kg), with a clear increase
in bone formation
(anabolic effect) as well as net gains in bone (e.g. BMD). Statistically
significant increases in
bone parameters and anabolic histomorphometric parameters were also found for
the positive
control group (PTH (1-34)).
Serum bone formation markers (P1NP, osteocalcin) were increased (p<0.05 vs
vehicle (VEH)) at various time points and doses, but particularly in the 30
mg/kg groups for Ab-
23 and Ab-5. Histomorphometric analysis revealed dramatic increases (p<0.05 vs
VEH) in bone
formation rates in cancellous bone at lumbar vertebra and proximal tibia (up
to 5-fold increase),
as well as at the endocortical surface of the femur midshaft (up to 10-fold
increase) at the higher
doses of Ab-23 and Ab-5. Trabecular thickness was increased with high dose Ab-
23 and Ab-5
in lumbar vertebrae (>60%, p<0.05 vs VEH). By study end (2 months), areal BMD,
as percent
change from baseline, was increased (p<0.05 vs VEH) at the femur neck, ultra-
distal radius (Ab-
23, 30 mg/kg), and lumbar vertebrae (Ab-5, 30 mg/kg). The increases in areal
BMD at the
lumbar vertebrae were accompanied by increases in vertebral strength (97%
increase in vertebral
maximal load for Ab-23, 30 mg/kg; p<0.05 vs VEH); baseline values for lumbar
areal BMD
prior to Mab dosing were statistically similar across all groups. In summary,
short-term
administration of sclerostin-neutralizing Mabs in cynomolgous monkeys
resulted, in part, in
increases in bone formation, BMD and vertebral bone strength.
From the foregoing, although specific embodiments of the invention have been
described herein for purposes of illustration, various modifications may be
made without
deviating from the spirit and scope of the invention. Accordingly, the
invention is not limited
153

CA 02947080 2016-11-01
except as by the appended claims.
154

?2947080 Summary - Canadian Patents Database (2024)
Top Articles
Latest Posts
Article information

Author: Manual Maggio

Last Updated:

Views: 6608

Rating: 4.9 / 5 (49 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.